Prediction of wave pattern and wave resistance of surface piercing bodies by a boundary element method

2007 ◽  
Vol 56 (3) ◽  
pp. 305-329 ◽  
Author(s):  
Sakir Bal
Author(s):  
Hassan Ghassemi ◽  
Ahmad Reza Kohansal ◽  
Abdollah Ardeshir

In this paper a three-dimensional numerical model using the higher order boundary element method (HOBEM) is developed to analyze hydrodynamic characteristics of hydrofoils beneath the free surface. The method uses combinations of the source and doublet by linear disctribution on each element of the body and free surface. The geometry of the element is represented by quadratic bilinear elements. The method is applied to three-dimensional hydrofoils of the symmetric Joukowski and NACA4412 profiles moving beneath the free surface in constant speed. Some results (pressure distribution, lift, wave-making drag and wave elevation and wave pattern) are presented. It is shown that this approach is accurate, efficient and the results are in good agreement with the experimental measurements and other calculated results.


1995 ◽  
Vol 5 (6) ◽  
pp. 621-638 ◽  
Author(s):  
J. H. Hilbing ◽  
Stephen D. Heister ◽  
C. A. Spangler

1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1080-1081
Author(s):  
Giuseppe Davi ◽  
Rosario M. A. Maretta ◽  
Alberto Milazzo

Sign in / Sign up

Export Citation Format

Share Document