scholarly journals A partitioned coupling approach for dynamic fluid–structure interaction with applications to biological membranes

2008 ◽  
Vol 57 (5) ◽  
pp. 555-581 ◽  
Author(s):  
C. Wood ◽  
A. J. Gil ◽  
O. Hassan ◽  
J. Bonet
Author(s):  
Hannes Lück ◽  
Michael Schäfer ◽  
Heinz-Peter Schiffer

This paper describes the impact of structural deformations on interstage cavity flow dynamics by adopting thermal fluid-structure interaction methods. These coupled numerical approaches solve the fluid-solid heat transfer in conjunction with the geometrical deformation due to mismatched centrifugal and thermal expansion of rotating and stationary turbine discs. Especially the changing clearances at the interstage labyrinth seal, at the rotor blade tips and at the rotor stator rim seals can be captured to calculate the correct flow physics at these locations. A manual explicit coupling approach in ANSYS is utilized that couples the CFX CHT solver with the FE solver Mechanical. The validation of a 3D sector model with experimental data shows improvements in predicting the metal temperature of the rotating walls but also disclose problems with the overheated stationary parts, mainly due to the utilization of steady state mixing planes. Additionally, a surrogate 2D model of the 3D model is introduced to compare the explicit coupling approach with an implicit approach exploiting the ANSYS MFX interface between the fluid and the solid domain. Thereby, the manual coupling approach reveals to be much more efficient for the examined thermal fluid-structure interaction.


2016 ◽  
Vol 307 ◽  
pp. 670-695 ◽  
Author(s):  
Vito Pasquariello ◽  
Georg Hammerl ◽  
Felix Örley ◽  
Stefan Hickel ◽  
Caroline Danowski ◽  
...  

2012 ◽  
Vol 457-458 ◽  
pp. 1062-1065
Author(s):  
Xiang Yang Zhou ◽  
Qi Lin Zhang

Comprehensive studies on effect of fluid-structure interaction and dynamic response for tension structure were conducted by the numerical simulation. An iterative coupling approach for time-dependent fluid-structure interactions is applied to tension membranous structures with large displacements. The coupling method connects a flow-condition-based interpolation element for incompressible fluids with a finite element for geometrically nonlinear problems. A membranous roof with saddle shape exposed to fluctuating wind field at atmosphere boundary layer was investigated for the coupling algorithm. The dynamic response and the fluctuating pressure on member structure were calculated according to the coupling configuration.


2014 ◽  
Author(s):  
Abdul Aziz Mohd. Yusof ◽  
◽  
Ardiyansyah Syahrom ◽  
M. N. Harun ◽  
A. H. Omar

Sign in / Sign up

Export Citation Format

Share Document