A semi‐staggered finite volume approach applied to two‐ and three‐dimensional flow in channels with gradual expansions

Author(s):  
Adyllyson Nascimento ◽  
Gustavo Rodrigues ◽  
José Ricardo Figueiredo
1985 ◽  
Vol 107 (2) ◽  
pp. 436-448 ◽  
Author(s):  
M. J. Pierzga ◽  
J. R. Wood

An experimental investigation of the three-dimensional flow field through a low aspect ratio, transonic, axial-flow fan rotor has been conducted using an advanced laser anemometer (LA) system. Laser velocimeter measurements of the rotor flow field at the design operating speed and over a range of through flow conditions are compared to analytical solutions. The numerical technique used herein yields the solution to the full, three-dimensional, unsteady Euler equations using an explicit time-marching, finite volume approach. The numerical analysis, when coupled with a simplified boundary layer calculation, generally yields good agreement with the experimental data. The test rotor has an aspect ratio of 1.56, a design total pressure ratio of 1.629 and a tip relative Mach number of 1.38. The high spatial resolution of the LA data matrix (9 radial × 30 axial × 50 blade-to-blade) permits details of the transonic flow field such as shock location, turning distribution, and blade loading levels to be investigated an compared to analytical results.


Sign in / Sign up

Export Citation Format

Share Document