scholarly journals Stability analysis of discrete population balance model for bubble growth and shrinkage

Author(s):  
Jiadong Li ◽  
Yixiang Liao ◽  
Dirk Lucas ◽  
Ping Zhou
2018 ◽  
Vol 89 (5) ◽  
pp. 1700550 ◽  
Author(s):  
Faris Karouni ◽  
Bradley P Wynne ◽  
Jesus Talamantes-Silva ◽  
Stephen Phillips

2015 ◽  
Vol 362 ◽  
pp. 200-208
Author(s):  
Zhen Hong Ban ◽  
Kok Keong Lau ◽  
Mohd Shariff Azmi

The bubble growth modelling in a supersaturated solution is difficult to be accomplished as it requires coupling of many interrelated hydrodynamics and mass transfer parameters which include pressure drop, supersaturation ratio, bubble size, etc. In the current work, all these factors have been taken into consideration to predict bubble growth in a supersaturated solution using Computational Fluid Dynamics (CFD) – Population Balance Model (PBM) approach. A classical bubble growth model has been used in the simulation. The bubble growth rate was successfully validated with experimental data in terms of bubble size. The attempt to simulate the bubble growth phenomenon of more than a single bubble condition has also been presented. The outcome of this approach is expected to be applied in many engineering areas.


Author(s):  
X. Qing ◽  
W. Xin ◽  
Y. Yan ◽  
W. Long

During hot melt fluidized bed coating, particle agglomeration leads to non-uniform particle size. In this study, Population Balance Model (PBM) is used to establish the conservation of the size of particles in the system. In order to solve the population balance model, it is discretized. The aggregation kernel of the particles can be described by the Equi-partition of Kinetic Energy (EKE) kernel based on the gas dynamics theory. The EKE kernel is incorporated into a discrete population balance (DPB) model, and the effective aggregation rate constant is obtained by fitting with the experimental data. Key words: Hot melt fluidized bed, PBM, DPB, EKE kernel, Aggregation rate constant.  


2012 ◽  
Vol 4 (3) ◽  
pp. 287-298 ◽  
Author(s):  
Conxita Lifante ◽  
Florian Reiterer ◽  
Thomas Frank ◽  
Alan Burns

2020 ◽  
pp. 014459872098361
Author(s):  
Zhongbao Wu ◽  
Qingjun Du ◽  
Bei Wei ◽  
Jian Hou

Foam flooding is an effective method for enhancing oil recovery in high water-cut reservoirs and unconventional reservoirs. It is a dynamic process that includes foam generation and coalescence when foam flows through porous media. In this study, a foam flooding simulation model was established based on the population balance model. The stabilizing effect of the polymer and the coalescence characteristics when foam encounters oil were considered. The numerical simulation model was fitted and verified through a one-dimensional displacement experiment. The pressure difference across the sand pack in single foam flooding and polymer-enhanced foam flooding both agree well with the simulation results. Based on the numerical simulation, the foam distribution characteristics in different cases were studied. The results show that there are three zones during foam flooding: the foam growth zone, stable zone, and decay zone. These characteristics are mainly influenced by the adsorption of surfactant, the gas–liquid ratio, the injection rate, and the injection scheme. The oil recovery of polymer-enhanced foam flooding is estimated to be 5.85% more than that of single foam flooding. Moreover, the growth zone and decay zone in three dimensions are considerably wider than in the one-dimensional model. In addition, the slug volume influences the oil recovery the most in the foam enhanced foam flooding, followed by the oil viscosity and gas-liquid ratio. The established model can describe the dynamic change process of foam, and can thus track the foam distribution underground and aid in optimization of the injection strategies during foam flooding.


Sign in / Sign up

Export Citation Format

Share Document