A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part I: New free surface-tracking algorithm and its verification

2003 ◽  
Vol 42 (7) ◽  
pp. 765-790 ◽  
Author(s):  
Min Soo Kim ◽  
Woo Il Lee
2014 ◽  
Vol 16 (5) ◽  
pp. 1110-1124 ◽  
Author(s):  
N. Soleiman Beygi ◽  
H. Hakimzadeh ◽  
M. R. Chenaglou

In this paper, details of a numerical model development for simulation of fluid flows with moving free surface are presented. The unsteady incompressible Navier–Stokes equations on a fixed grid system are used to obtain velocity and pressure values in the computational domain and volume of fluid (VOF) method is used to determine free surface location. In order to reduce numerical smearing and increase accuracy of numerical modeling of fluid flow with moving free surface, a new free surface-tracking method is proposed. The proposed method is a combination of genetic algorithm and free surface tracking method based on donor and acceptor scheme. The specification of the new combinational method can be summarized in determining orientation vector and plane constant to represent the free surface orientation in each cell. The proposed algorithm can be easily used in any unstructured grids. In this method, the fluid flow equations are explicitly discretized with the finite volume method and the projection method is used to determine the velocity and pressure magnitude in computational domain. Validity of the new solution algorithm is demonstrated through its application to the dam break and the bore motion examples.


1995 ◽  
Vol 117 (4) ◽  
pp. 683-690 ◽  
Author(s):  
Peter E. Raad ◽  
Shea Chen ◽  
David B. Johnson

A new method of calculating the pressure field in the simulation of two-dimensional, unsteady, incompressible, free surface fluid flow by use of a marker and cell method is presented. A critical feature of the new method is the introduction of a finer mesh of cells in addition to the regular mesh of finite volume cells. The smaller (micro) cells are used only near the free surface, while the regular (macro) cells are used throughout the computational domain. The movement of the free surface is accomplished by the use of massless surface markers, while the discrete representation of the free surface for the purpose of the application of pressure boundary conditions is accomplished by the use of micro cells. In order to exploit the advantages offered by micro cells, a new general equation governing the pressure field is derived. Micro cells also enable the identification and treatment of multiple points on the free surface in a single surface macro cell as well as of points on the free surface that are located in a macro cell that has no empty neighbors. Both of these situations are likely to occur repeatedly in a free surface fluid flow simulation, but neither situation has been explicitly taken into account in previous marker and cell methods. Numerical simulation results obtained both with and without the use of micro cells are compared with each other and with theoretical solutions to demonstrate the capabilities and validity of the new method.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Deepak Garg ◽  
Antonella Longo ◽  
Paolo Papale

This work aims to develop a numerical wave tank for viscous and inviscid flows. The Navier-Stokes equations are solved by time-discontinuous stabilized space-time finite element method. The numerical scheme tracks the free surface location using fluid velocity. A segregated algorithm is proposed to iteratively couple the fluid flow and mesh deformation problems. The numerical scheme and the developed computer code are validated over three free surface problems: solitary wave propagation, the collision between two counter moving waves, and wave damping in a viscous fluid. The benchmark tests demonstrate that the numerical approach is effective and an attractive tool for simulating viscous and inviscid free surface flows.


Sign in / Sign up

Export Citation Format

Share Document