Comparative study of lattice-Boltzmann and finite volume methods for the simulation of laminar flow through a 4:1 planar contraction

2004 ◽  
Vol 46 (9) ◽  
pp. 903-920 ◽  
Author(s):  
Yarub Y. Al-Jahmany ◽  
Gunther Brenner ◽  
Peter O. Brunn
2016 ◽  
Vol 846 ◽  
pp. 18-22
Author(s):  
Rohit Bhattacharya ◽  
Abouzar Moshfegh ◽  
Ahmad Jabbarzadeh

The flow over bluff bodies is separated compared to the flow over streamlined bodies. The investigation of the fluid flow over a cylinder with a streamwise slit has received little attention in the past, however there is some experimental evidence that show for turbulent regime it reduces the drag coefficient. This work helps in understanding the fluid flow over such cylinders in the laminar regime. As the width of the slit increases the drag coefficient keeps on reducing resulting in a narrower wake as compared to what is expected for flow over a cylinder. In this work we have used two different approaches in modelling a 2D flow for Re=10 to compare the results for CFD using finite volume method (ANSYS FLUENTTM) and Lattice Boltzmann methods. In all cases cylinders of circular cross section have been considered while slit width changing from 10% to 40% of the cylinder diameter. . It will be shown that drag coefficient decreases as the slit ratio increases. The effect of slit size on drag reduction is studied and discussed in detail in the paper. We have also made comparison of the results obtained from Lattice Boltzmann and finite volume methods.


2004 ◽  
Vol 15 (02) ◽  
pp. 307-319 ◽  
Author(s):  
AHMAD AL-ZOUBI ◽  
GUNTHER BRENNER

In the present paper, a comparative study of numerical solutions for steady flows with heat transfer based on the finite volume method (FVM) and the relatively new lattice Boltzmann method (LBM) is presented. In the last years, the LB methods have challenged the classical FV methods to solve the Navier–Stokes equations and have proven to be superior in accuracy and efficiency for certain applications. Most of these studies were related to the transport of mass and momentum. In the meantime, significant effort has been invested in the application of the LBM to simulate flows including heat transfer. The studies in the present paper are the analysis of performance and accuracy aspects of LBM applied to the prediction of these flows. For a fully developed laminar flow between parallel plates, analytical solutions for the heat transfer in fully developed thermal boundary layers are available and may be compared with the respective numerical results. Finally, a hybrid approach is proposed to circumvent numerical problems of the thermal LB methods.


AIChE Journal ◽  
1985 ◽  
Vol 31 (10) ◽  
pp. 1736-1739 ◽  
Author(s):  
E. Mitsoulis ◽  
J. Vlachopoulos

Sign in / Sign up

Export Citation Format

Share Document