Electrochemical Impedance Spectroscopy of Electrospun La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3– δ Nanorod Cathodes for Intermediate Temperature – Solid Oxide Fuel Cells

Fuel Cells ◽  
2019 ◽  
Author(s):  
P. Costamagna ◽  
C. Sanna ◽  
A. Campodonico ◽  
E. M. Sala ◽  
R. Sažinas ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4702
Author(s):  
Roberto Spotorno ◽  
Marlena Ostrowska ◽  
Simona Delsante ◽  
Ulf Dahlmann ◽  
Paolo Piccardo

A commercially available glass-ceramic composition is applied on a ferritic stainless steel (FSS) substrate reproducing a type of interface present in solid oxide fuel cells (SOFCs) stacks. Electrochemical impedance spectroscopy (EIS) is used to study the electrical response of the assembly in the temperature range of 380–780 °C and during aging for 250 h at 780 °C. Post-experiment analyses, performed by means of X-ray diffraction (XRD), and along cross-sections by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, highlight the microstructural changes promoted by aging conditions over time. In particular, progressive crystallization of the glass-ceramic, high temperature corrosion of the substrate and diffusion of Fe and Cr ions from the FSS substrate into the sealant influence the electrical response of the system under investigation. The electrical measurements show an increase in conductivity to 5 × 10−6 S∙cm−1, more than one order of magnitude below the maximum recommended value.


2012 ◽  
Vol 727-728 ◽  
pp. 769-774
Author(s):  
A. Ávila ◽  
J. Poveda ◽  
D. Gómez ◽  
D. Hotza ◽  
J. Escobar

Solid oxide fuel cells (SOFCs) have emerged as an efficient way to transform chemical energy into electrical energy. However, a major disadvantage of this technology is related to the high temperatures required for SOFC operation. In this way, new materials are necessary to maintain the electrical properties of the cell at intermediate temperatures. Based on these ideas, it is necessary to study both the structural variation of the cells components at different temperatures and their electrochemical behavior. In this work, a crystallographic characterization is presented, which was performed in a commercial SOFC cell using X-ray diffraction (XRD). An equivalent linear electrical model to predict SOFC losses is developed as well. Keywords: Solid oxide fuel cells (SOFCs); AC impedance; Electrochemical impedance spectroscopy (EIS); Equivalent circuit models.


Sign in / Sign up

Export Citation Format

Share Document