impedance spectroscopy analysis
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 54)

H-INDEX

27
(FIVE YEARS 5)

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2817
Author(s):  
Sadia Iram ◽  
Azhar Mahmood ◽  
Muhammad Fahad Ehsan ◽  
Asad Mumtaz ◽  
Manzar Sohail ◽  
...  

This research endeavor aimed to synthesize the lead (II) diphenyldiselenophosphinate complex and its use to obtain lead selenide nanostructured depositions and further the impedance spectroscopic analysis of these obtained PbSe nanostructures, to determine their roles in the electronics industry. The aerosol-assisted chemical vapor deposition technique was used to provide lead selenide deposition by decomposition of the complex at different temperatures using the glass substrates. The obtained films were revealed to be a pure cubic phase PbSe, as confirmed by X-ray diffraction analysis. SEM and TEM micrographs demonstrated three-dimensionally grown interlocked or aggregated nanocubes of the obtained PbSe. Characteristic dielectric measurements and the impedance spectroscopy analysis at room temperature were executed to evaluate PbSe properties over the frequency range of 100 Hz–5 MHz. The dielectric constant and dielectric loss gave similar trends, along with altering frequency, which was well explained by the Koops theory and Maxwell–Wagner theory. The effective short-range translational carrier hopping gave rise to an overdue remarkable increase in ac conductivity (σac) on the frequency increase. Fitting of a complex impedance plot was carried out with an equivalent circuit model (Rg Cg) (Rgb Qgb Cgb), which proved that grains, as well as grain boundaries, are responsible for the relaxation processes. The asymmetric depressed semicircle with the center lower to the impedance real axis provided a clear explanation of non-Debye dielectric behavior.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1134
Author(s):  
Jacob Ress ◽  
Ulises Martin ◽  
David M. Bastidas

Herein, a waterborne acrylic coating doped with pH sensitive colophony microcapsules containing corrosion inhibitors was studied on carbon steel plates. The changes in the physical properties of the coatings were studied. The microcapsule coating specimens maintained more noble Ecorr values compared to the control in deionized water and simulated concrete pore solutions with −513 and −531 mVSCE, respectively. Additionally, the microcapsule polarization results for both pH 12.6 and 6.2 electrolyte solutions showed lower icorr values of 1.20 × 10−6 and 3.24 × 10−6 A·cm−2, respectively, compared to the control sample (1.15 × 10−5 and 4.21 × 10−5 A·cm−2). Therefore, the microcapsule coating provided more protection from chloride attack on the substrate as well as the deleterious effects of low pH on carbon steel. The electrochemical impedance spectroscopy analysis corroborated the DC polarization results, showing increased corrosion resistance for the microcapsule coated specimens compared to the control. Moreover, the Rpore and Rct are much higher than the control, indicating the protection of the inhibitors. The Ceff,dl also shows lower values for the microcapsule coating than the control, showing a more protective and less doped double layer.


2021 ◽  
pp. 413346
Author(s):  
Douglas Henrique Vieira ◽  
Maiza da Silva Ozório ◽  
Gabriel Leonardo Nogueira ◽  
Neri Alves

2021 ◽  
Vol 321 ◽  
pp. 59-64
Author(s):  
Cecílie Mizerová ◽  
Ivo Kusák ◽  
Pavel Rovnaník ◽  
Patrik Bayer

Research of alkali-activated materials and geopolymers suggests their increased ability to transfer the electric charge thus indicating their suitability for self-sensing and other multifunctional composites. In this paper, the electrical properties of metakaolin geopolymer are enhanced by the incorporated steel microfibres that also improve the mechanical and fractural properties of the composite. Selected electrical properties of metakaolin geopolymer mortars with steel microfibres (up to 30 % of metakaolin wt.) were assessed via impedance spectroscopy analysis and followed by testing their compressive and flexural strength. Mercury intrusion porosimetry and SEM imaging enabled to characterize the binder microstructure and quality of fibre-matrix bonding.


Sign in / Sign up

Export Citation Format

Share Document