Tectonic evolution of the Qingshuihe Basin since the Late Miocene: Relationship with north‐eastward expansion of the Tibetan Plateau

2019 ◽  
Vol 55 (11) ◽  
pp. 7148-7166 ◽  
Author(s):  
Jingxiong Tian ◽  
Mingtao Li ◽  
Zhirong Liang ◽  
Liming Li ◽  
Guoxiang Yan ◽  
...  
2017 ◽  
Vol 41 ◽  
pp. 1-8 ◽  
Author(s):  
Zeming Zhang ◽  
Lin Ding ◽  
Zhidan Zhao ◽  
M. Santosh

Author(s):  
Rui Zhang ◽  
Xiaohao Wei ◽  
Vadim A. Kravchinsky ◽  
Leping Yue ◽  
Yan Zheng ◽  
...  

2021 ◽  
Author(s):  
Chihao Chen ◽  
Yan Bai ◽  
Xiaomin Fang ◽  
Haichao Guo ◽  
Weilin Zhang ◽  
...  

<p>As an important driver of global climate change during the Cenozoic, the uplift of the Tibetan Plateau (TP) has strongly influenced the origination and evolution of the Asian monsoon system, and therefore the aridification of central Asia. Over the last two decades, the application of stable isotope paleoaltimeters and the discoveries of mammal and plant fossils have greatly promoted the understanding of the uplift history of the TP. However, paleoaltitudinal reconstructions based on different paleoaltimeters have suggested differing outcomes and therefore remain controversial. Novel paleoaltimeters have therefore needed to be developed and applied to constrain the uplift history of the TP more accurately and effectively by comparing and verifying multi-proxies. Paleothermometers based on glyceryl dialkyl glycerol tetraethers (GDGTs) are widely used in terrestrial and ocean temperature reconstructions. In this study, GDGT-based paleothermometers were tentatively applied to the Gyirong Basin on the southern TP, and the Xining Basins on the northern TP, in an attempt to quantitatively reconstruct their paleoaltitudes.</p><p>Both soil and aquatic-typed branched GDGTs have been identified from Late Miocene to Mid-Pliocene (7.0-3.2 Ma) samples taken from the Gyirong Basin; their reconstructed paleotemperatures were 7.5±3.3°C and 14.2±4.5°C, respectively. The former temperature may represent the mean temperature of the terrestrial organic matter input area, while the latter may represent the lake surface temperature. The results would suggest that the lake surface of the Gyirong Basin during the Late Miocene to Mid-Pliocene was 2.5±0.8 km and that the surrounding mountains exceeded 3.6±0.6 km, implying that the central Himalayas underwent a rapid uplift of ~1.5 km after the Mid-Pliocene.</p><p>GDGT-based paleotemperature reconstructions using MBT'<sub>5ME</sub> values show that the Xining Basin dropped in temperature by ~10°C during the ~10.5-8 Ma period, exceeding that in sea surface temperatures and low-altitude terrestrial temperatures during these periods. By combining these results with contemporaneous tectonic and sedimentary records, we infer that these cooling events signaled the regional uplift with the amplitude of ~1 km of the Xining basins. Our results support that the TP was still growing and uplifting substantially since the Late Miocene, which may provide new evidence for understanding the growth, expansion and uplift patterns of the TP.</p>


2016 ◽  
Vol 52 (4) ◽  
pp. 646-666 ◽  
Author(s):  
Bhupati Neupane ◽  
Yiwen Ju ◽  
Fengqi Tan ◽  
Upendra Baral ◽  
Prakash Das Ulak ◽  
...  

2012 ◽  
Vol 114 (3-4) ◽  
pp. 236-249 ◽  
Author(s):  
Kai-Jun Zhang ◽  
Yu-Xiu Zhang ◽  
Xian-Chun Tang ◽  
Bin Xia

An erosion surface, interpreted as a pediplain, is traced across the Tibetan Plateau. As a result of faulting and warping, its elevation now varies from approximately 4500-6000m. It was cut across folded and thrust Eocene strata and mid-Miocene granites, but was dislocated by major faults before the Pliocene. Its age is thought to be mid- to late Miocene. Crustal shortening after pediplanation is small. If the crust beneath the Plateau was thickened by deformation during crustal shortening, the thickening must mainly have occurred before the pediplanation.


2019 ◽  
Vol 15 (2) ◽  
pp. 405-421 ◽  
Author(s):  
Xiaomiao Li ◽  
Tingjiang Peng ◽  
Zhenhua Ma ◽  
Meng Li ◽  
Zhantao Feng ◽  
...  

Abstract. The Pliocene climate and its driving mechanisms have attracted substantial scientific interest because of their potential as an analog for near-future climates. The late Miocene–Pliocene red clay sequence of the main Chinese Loess Plateau (CLP) has been widely used to reconstruct the history of interior Asian aridification and the Asian monsoon. However, red clay sequences deposited on the planation surface of the Tibetan Plateau (TP) are rare. A continuous red clay sequence was recently discovered on the uplifted Xiaoshuizi (XSZ) planation surface in the Maxian Mountains, northeastern (NE) TP. In this study, we analyzed multiple climatic proxies from the XSZ red clay sequence with the aim of reconstructing the late Miocene–early Pliocene climate history of the NE TP and to assess regional climatic differences between the central and western CLP. Our results demonstrate the occurrence of minimal weathering and pedogenesis during the late Miocene, which indicates that the climate was arid. We speculate that precipitation delivered by the paleo East Asian summer monsoon (EASM) was limited during this period and that the intensification of the circulation of the westerlies resulted in arid conditions in the study region. Subsequently, enhanced weathering and pedogenesis occurred intermittently during 4.7–3.9 Ma, which attests to an increase in effective moisture. We ascribe the arid–humid climatic transition near ∼4.7 Ma to the expansion of the paleo-EASM. The warming of the high northern latitudes in response to the closure of the Panama Seaway may have been responsible for the thermodynamical enhancement of the paleo-EASM system, which permitted more moisture to be transported to the NE TP.


2011 ◽  
Vol 19 (4) ◽  
pp. 850-866 ◽  
Author(s):  
Linqi Xia ◽  
Xiangmin Li ◽  
Zhongping Ma ◽  
Xueyi Xu ◽  
Zuchun Xia

Sign in / Sign up

Export Citation Format

Share Document