scholarly journals Repetition suppression in occipitotemporal cortex despite negligible visual similarity: Evidence for postperceptual processing?

2010 ◽  
Vol 32 (10) ◽  
pp. 1519-1534 ◽  
Author(s):  
Aidan J. Horner ◽  
Richard N. Henson
2019 ◽  
Vol 31 (7) ◽  
pp. 1065-1078
Author(s):  
Katarzyna Rączy ◽  
Aleksandra Urbańczyk ◽  
Maksymilian Korczyk ◽  
Jakub Michał Szewczyk ◽  
Ewa Sumera ◽  
...  

The task-specific principle asserts that, following deafness or blindness, the deprived cortex is reorganized in a manner such that the task of a given area is preserved even though its input modality has been switched. Accordingly, tactile reading engages the ventral occipitotemporal cortex (vOT) in the blind in a similar way to regular reading in the sighted. Others, however, show that the vOT of the blind processes spoken sentence structure, which suggests that the task-specific principle might not apply to vOT. The strongest evidence for the vOT's engagement in sighted reading comes from orthographic repetition–suppression studies. Here, congenitally blind adults were tested in an fMRI repetition–suppression paradigm. Results reveal a double dissociation, with tactile orthographic priming in the vOT and auditory priming in general language areas. Reconciling our finding with other evidence, we propose that the vOT in the blind serves multiple functions, one of which, orthographic processing, overlaps with its function in the sighted.


2019 ◽  
Vol 31 (7) ◽  
pp. 1018-1029 ◽  
Author(s):  
Zhiheng Zhou ◽  
Tutis Vilis ◽  
Lars Strother

Reading relies on the rapid visual recognition of words viewed in a wide variety of fonts. We used fMRI to identify neural populations showing reduced fMRI responses to repeated words displayed in different fonts (“font-invariant” repetition suppression). We also identified neural populations showing greater fMRI responses to words repeated in a changing font as compared with words repeated in the same font (“font-sensitive” release from repetition suppression). We observed font-invariant repetition suppression in two anatomically distinct regions of the left occipitotemporal cortex (OT), a “visual word form area” in mid-fusiform cortex, and a more posterior region in the middle occipital gyrus. In contrast, bilateral shape-selective lateral occipital cortex and posterior fusiform showed considerable sensitivity to font changes during the viewing of repeated words. Although the visual word form area and the left middle occipital gyrus showed some evidence of font sensitivity, both regions showed a relatively greater degree of font invariance than font sensitivity. Our results show that the neural mechanisms in the left OT involved in font-invariant word recognition are anatomically distinct from those sensitive to font-related shape changes. We conclude that font-invariant representation of visual word form is instantiated at multiple levels by anatomically distinct neural mechanisms within the left OT.


2012 ◽  
Vol 23 (5) ◽  
pp. 1073-1084 ◽  
Author(s):  
Michael. P. Ewbank ◽  
Richard N. Henson ◽  
James B. Rowe ◽  
Raliza S. Stoyanova ◽  
Andrew J. Calder

2019 ◽  
Vol 116 (36) ◽  
pp. 17723-17728 ◽  
Author(s):  
J. S. H. Taylor ◽  
Matthew H. Davis ◽  
Kathleen Rastle

Reading involves transforming arbitrary visual symbols into sounds and meanings. This study interrogated the neural representations in ventral occipitotemporal cortex (vOT) that support this transformation process. Twenty-four adults learned to read 2 sets of 24 novel words that shared phonemes and semantic categories but were written in different artificial orthographies. Following 2 wk of training, participants read the trained words while neural activity was measured with functional MRI. Representational similarity analysis on item pairs from the same orthography revealed that right vOT and posterior regions of left vOT were sensitive to basic visual similarity. Left vOT encoded letter identity and representations became more invariant to position along a posterior-to-anterior hierarchy. Item pairs that shared sounds or meanings, but were written in different orthographies with no letters in common, evoked similar neural patterns in anterior left vOT. These results reveal a hierarchical, posterior-to-anterior gradient in vOT, in which representations of letters become increasingly invariant to position and are transformed to convey spoken language information.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe0693
Author(s):  
Ali Ghazizadeh ◽  
Okihide Hikosaka

Recent evidence implicates both basal ganglia and ventrolateral prefrontal cortex (vlPFC) in encoding value memories. However, comparative roles of cortical and basal nodes in value memory are not well understood. Here, single-unit recordings in vlPFC and substantia nigra reticulata (SNr), within macaque monkeys, revealed a larger value signal in SNr that was nevertheless correlated with and had a comparable onset to the vlPFC value signal. The value signal was maintained for many objects (>90) many weeks after reward learning and was resistant to extinction in both regions and to repetition suppression in vlPFC. Both regions showed comparable granularity in encoding expected value and value uncertainty, which was paralleled by enhanced gaze bias during free viewing. The value signal dynamics in SNr could be predicted by combining responses of vlPFC neurons according to their value preferences consistent with a scheme in which cortical neurons reached SNr via direct and indirect pathways.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jannath Begum-Ali ◽  
◽  
Anna Kolesnik-Taylor ◽  
Isabel Quiroz ◽  
Luke Mason ◽  
...  

Abstract Background Sensory modulation difficulties are common in children with conditions such as Autism Spectrum Disorder (ASD) and could contribute to other social and non-social symptoms. Positing a causal role for sensory processing differences requires observing atypical sensory reactivity prior to the emergence of other symptoms, which can be achieved through prospective studies. Methods In this longitudinal study, we examined auditory repetition suppression and change detection at 5 and 10 months in infants with and without Neurofibromatosis Type 1 (NF1), a condition associated with higher likelihood of developing ASD. Results In typically developing infants, suppression to vowel repetition and enhanced responses to vowel/pitch change decreased with age over posterior regions, becoming more frontally specific; age-related change was diminished in the NF1 group. Whilst both groups detected changes in vowel and pitch, the NF1 group were largely slower to show a differentiated neural response. Auditory responses did not relate to later language, but were related to later ASD traits. Conclusions These findings represent the first demonstration of atypical brain responses to sounds in infants with NF1 and suggest they may relate to the likelihood of later ASD.


Author(s):  
Elise L. Radtke ◽  
Ulla Martens ◽  
Thomas Gruber

AbstractWe applied high-density EEG to examine steady-state visual evoked potentials (SSVEPs) during a perceptual/semantic stimulus repetition design. SSVEPs are evoked oscillatory cortical responses at the same frequency as visual stimuli flickered at this frequency. In repetition designs, stimuli are presented twice with the repetition being task irrelevant. The cortical processing of the second stimulus is commonly characterized by decreased neuronal activity (repetition suppression). The behavioral consequences of stimulus repetition were examined in a companion reaction time pre-study using the same experimental design as the EEG study. During the first presentation of a stimulus, we confronted participants with drawings of familiar object images or object words, respectively. The second stimulus was either a repetition of the same object image (perceptual repetition; PR) or an image depicting the word presented during the first presentation (semantic repetition; SR)—all flickered at 15 Hz to elicit SSVEPs. The behavioral study revealed priming effects in both experimental conditions (PR and SR). In the EEG, PR was associated with repetition suppression of SSVEP amplitudes at left occipital and repetition enhancement at left temporal electrodes. In contrast, SR was associated with SSVEP suppression at left occipital and central electrodes originating in bilateral postcentral and occipital gyri, right middle frontal and right temporal gyrus. The conclusion of the presented study is twofold. First, SSVEP amplitudes do not only index perceptual aspects of incoming sensory information but also semantic aspects of cortical object representation. Second, our electrophysiological findings can be interpreted as neuronal underpinnings of perceptual and semantic priming.


Sign in / Sign up

Export Citation Format

Share Document