scholarly journals Rapid response activatable molecular probes for intraoperative optical image-guided tumor resection

Hepatology ◽  
2012 ◽  
Vol 56 (3) ◽  
pp. 1170-1173 ◽  
Author(s):  
Samuel Achilefu
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaojing Shi ◽  
Caiguang Cao ◽  
Zeyu Zhang ◽  
Jie Tian ◽  
Zhenhua Hu

AbstractCerenkov luminescence imaging (CLI) is a novel optical imaging technique that has been applied in clinic using various radionuclides and radiopharmaceuticals. However, clinical application of CLI has been limited by weak optical signal and restricted tissue penetration depth. Various fluorescent probes have been combined with radiopharmaceuticals for improved imaging performances. However, as most of these probes only interact with Cerenkov luminescence (CL), the low photon fluence of CL greatly restricted it’s interaction with fluorescent probes for in vivo imaging. Therefore, it is important to develop probes that can effectively convert energy beyond CL such as β and γ to the low energy optical signals. In this study, a Eu3+ doped gadolinium oxide (Gd2O3:Eu) was synthesized and combined with radiopharmaceuticals to achieve a red-shifted optical spectrum with less tissue scattering and enhanced optical signal intensity in this study. The interaction between Gd2O3:Eu and radiopharmaceutical were investigated using 18F-fluorodeoxyglucose (18F-FDG). The ex vivo optical signal intensity of the mixture of Gd2O3:Eu and 18F-FDG reached 369 times as high as that of CLI using 18F-FDG alone. To achieve improved biocompatibility, the Gd2O3:Eu nanoparticles were then modified with polyvinyl alcohol (PVA), and the resulted nanoprobe PVA modified Gd2O3:Eu (Gd2O3:Eu@PVA) was applied in intraoperative tumor imaging. Compared with 18F-FDG alone, intraoperative administration of Gd2O3:Eu@PVA and 18F-FDG combination achieved a much higher tumor-to-normal tissue ratio (TNR, 10.24 ± 2.24 vs. 1.87 ± 0.73, P = 0.0030). The use of Gd2O3:Eu@PVA and 18F-FDG also assisted intraoperative detection of tumors that were omitted by preoperative positron emission tomography (PET) imaging. Further experiment of image-guided surgery demonstrated feasibility of image-guided tumor resection using Gd2O3:Eu@PVA and 18F-FDG. In summary, Gd2O3:Eu can achieve significantly optimized imaging property when combined with 18F-FDG in intraoperative tumor imaging and image-guided tumor resection surgery. It is expected that the development of the Gd2O3:Eu nanoparticle will promote investigation and application of novel nanoparticles that can interact with radiopharmaceuticals for improved imaging properties. This work highlighted the impact of the nanoprobe that can be excited by radiopharmaceuticals emitting CL, β, and γ radiation for precisely imaging of tumor and intraoperatively guide tumor resection.


2011 ◽  
Vol 83 (1) ◽  
pp. 200-206 ◽  
Author(s):  
Yu-Jer Hwang ◽  
Joseph Granelli ◽  
Julia G. Lyubovitsky

2015 ◽  
Vol 21 (3) ◽  
pp. 206-212 ◽  
Author(s):  
Julia Parrish-Novak ◽  
Eric C. Holland ◽  
James M. Olson
Keyword(s):  

2011 ◽  
Author(s):  
Xiaoyao Fan ◽  
Songbai Ji ◽  
Kathryn Fontaine ◽  
Alex Hartov ◽  
David Roberts ◽  
...  

2013 ◽  
Vol 16 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Stijn Keereweer ◽  
Pieter B. A. A. Van Driel ◽  
Dominic J. Robinson ◽  
Clemens W. G. M. Lowik

2015 ◽  
Vol 12 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Giuseppe MV Barbagallo ◽  
Stefano Palmucci ◽  
Massimiliano Visocchi ◽  
Sabrina Paratore ◽  
Giancarlo Attinà ◽  
...  

Abstract BACKGROUND Intraoperative magnetic resonance imaging is the gold standard among image-guided techniques for glioma surgery. Scant data are available on the role of intraoperative computed tomography (i-CT) in high-grade glioma (HGG) surgery. OBJECTIVE To verify the technical feasibility and usefulness of portable i-CT in image-guided surgical resection of HGGs. METHODS This is a retrospective series control analysis of prospectively collected data. Twenty-five patients (Group A) with HGGs underwent surgery using i-CT and 5-aminolevulinic acid (5-ALA) fluorescence. A second cohort of 25 patients (Group B) underwent 5-ALA fluorescence–guided surgery but without i-CT. We used a portable 8-slice CT scanner and, in both groups, neuronavigation. Extent of tumor resection (ETOR) and pre- and postoperative Karnofsky performance status (KPS) scores were measured; the impact of i-CT on overall survival (OS) and progression-free survival (PFS) was also analyzed. RESULTS In 8 patients (32%) in Group A, i-CT revealed residual tumor, and in 4 of them it helped to also resect pathological tissue detached from the main tumor. EOTR in these 8 patients was 97.3% (96%-98.6%). In Group B, residual tumor was found in 6 patients, whose tumor's mean resection was 98% (93.5-99.7). The Student t test did not show statistically significant differences in EOTR in the 2 groups. The KPS score decreased from 67 to 69 after surgery in Group A and from 74 to 77 in Group B (P = .07 according to the Student t test). Groups A and B did not show statistically significant differences in OS and PFS (P = .61 and .46, respectively, by the log-rank test). CONCLUSION No statistically significant differences in EOTR, KPS, PFS, and OS were observed in the 2 groups. However, i-CT helped to verify EOTR and to update the neuronavigator with real-time images, as well as to identify and resect pathological tissue in multifocal tumors. i-CT is a feasible and effective alternative to intraoperative magnetic resonance imaging. Portable i-CT can provide useful real-time information during brain surgery and can be easily introduced in neurosurgical theaters in daily practice.


Sign in / Sign up

Export Citation Format

Share Document