scholarly journals Lenalidomide abrogates the survival effect of bone marrow stromal cells in chronic lymphocytic leukemia

2021 ◽  
Author(s):  
Csilla Kriston ◽  
Márk Hernádfői ◽  
Márk Plander ◽  
Ágnes Márk ◽  
Ferenc Takács ◽  
...  
Stem Cells ◽  
2021 ◽  
Vol 39 (6) ◽  
pp. 819-830
Author(s):  
Franziska Heydebrand ◽  
Maximilian Fuchs ◽  
Meik Kunz ◽  
Simon Voelkl ◽  
Anita N. Kremer ◽  
...  

2017 ◽  
Vol 59 (6) ◽  
pp. 1427-1438 ◽  
Author(s):  
Hima V. Vangapandu ◽  
Huiqin Chen ◽  
William G. Wierda ◽  
Michael J. Keating ◽  
Anil Korkut ◽  
...  

2018 ◽  
Vol Volume 11 ◽  
pp. 5151-5170 ◽  
Author(s):  
Lu Ding ◽  
Wan Zhang ◽  
Lili Yang ◽  
Helene Pelicano ◽  
Kaiwen Zhou ◽  
...  

2013 ◽  
Vol 55 (4) ◽  
pp. 899-910 ◽  
Author(s):  
Viralkumar Patel ◽  
Lisa S. Chen ◽  
William G. Wierda ◽  
Kumudha Balakrishnan ◽  
Varsha Gandhi

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4839-4839
Author(s):  
Manik Chatterjee ◽  
Thorsten Stuehmer ◽  
Pia Herrmann ◽  
Kurt Bommert ◽  
Bernd Dorken ◽  
...  

Abstract The IL-6R/STAT3 pathway has been reported to critically contribute to the pathogenesis of multiple myeloma (MM) and to protect MM cells from apoptosis. However, recently we could demonstrate that MM cells become independent of the IL-6R/STAT3 pathway if they are cocultured with bone marrow stromal cells (BMSCs), suggesting that the BM microenvironment stimulates IL-6-independent pathways that exert a pro-survival effect. It was therfore the aim of this study to analyze the underlying mechanism of this phenomenon. Pathway analysis revealed that BMSCs stimulate STAT3 via the IL-6R, and MAPK in parts via IL-6R-independent mechanisms. Abolition of MEK1, 2 activity with PD98059, or of ERK1,2 through siRNA constructs, was insufficient to induce apoptosis. However, the combined disruption of the IL-6R/STAT3 and MEK1,2/ERK1,2 pathways led to strong induction of apoptosis even in the presence of BMSCs. Thus, disruption of the MEK/ERK pathway restores IL-6/STAT3 dependence of MM cells in the presence of BMSCs indicating that BMSC-mediated induction of the MEK/MAPK pathway is the mechanism by which BMSCs render MM cells IL-6/STAT3 idependent. Consequently, in the presence of cells from the BM microenvironment the combined targeting of different (and independently activated) pathways is required to efficiently induce apoptosis of MM cells. This effect was observed with MM cell lines and with primary MM cells and might have direct implications for the development of future therapeutic strategies for MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3149-3149
Author(s):  
Antonina Kurtova ◽  
Maite P. Quiroga ◽  
William G. Wierda ◽  
Michael Keating ◽  
Jan A. Burger

Abstract Contact between chronic lymphocytic leukemia (CLL) cells and accessory stromal cells in tissue microenvironments is considered to play a major role in regulating CLL cell survival and disease progression. Stromal cells of various origins and species, and variable stromal-CLL cell ratios have been used in the past to study CLL-stromal cell interactions and to assess cell-adhesion mediated drug resistance (CAM-DR). Because of the heterogeneity of the currently used in vitro systems to study CLL-MSC interactions, and the importance of these co-culture systems for development and testing of novel agents, we tested a panel of murine and human MSC lines for their capacities to support CLL cell survival and CAM-DR, using various CLL-MSC ratios and fludarabine (F-ara-A) to induce CLL cell apoptosis. We tested four murine, non-transformed MSC lines derived from bone marrow: M210B4, KUM4, ST-2 and KUSA-H1. Also, we tested three human transformed cell lines: Stroma-NKtert, derived from bone marrow and immortalized by human telomerase reverse transcriptase (hTERT), UE6E7-T2 derived from bone marrow and transformed with human papilloma viruses (HPV) E6, E7 and hTERT, and UCB408E6E7Tert33 derived from umbilical cord blood and transformed with hTERT and HPV E6, E7. CLL cells were isolated from peripheral blood of untreated patients and each cell line was tested with at least three different patients according to the following protocol: viability of CLL was tested after 24, 48 and 72 hours by flow cytometry after staining with DiOC6 and propidium iodide. The following conditions were assayed on each of the MSC lines: CLL cells in suspension culture, CLL cells in suspension culture with 10 mM F-ara-A, CLL cells in co-culture with MSC, and CLL cells in co-culture with MSC and with 10 mM F-ara-A. Firstly, we performed titration experiments in order to identify the most appropriate ratio between stromal and CLL cells, using CLL-MSC ratios of 5:1, 10:1, 20:1, 50:1 and 100:1. We found a decline in MSC-derived CLL cell protection at the highest ratio of 100:1, suggesting that ratios of 50:1 or lower provide optimal conditions for in vitro assays. Results shown in Table 1 were assayed using a 20:1 ratio and represented relative viabilities when compared to untreated controls (mean±SEM). Regarding the protective effect of different MSC, we found that all MSC lines demonstrated remarkable protection of CLL cells from spontaneous and F-ara-A-induced apoptosis. We also found that stromal cells that had round shape morphology and easily formed confluent monolayer (M210B4, KUSA-H1, Stroma-NKTert) showed more prolonged protective effect in comparison to cell lines with more spindle shaped morphology (ST-2, KUM4, UE6E7-T2). The failure of UE6E7-T2 and UCB408E6E7Tert33 to demonstrate long-term protection of CLL cells could be related to their own sensitivity to F-ara-A. In this comparative study we demonstrated that both murine and human MSC provide substantial and comparable levels of protection from spontaneous and drug-induced apoptosis. CLL:MSC ratios of 50:1 or lower can be considered ideal for co-culture experiments. Further experiments have to be done to determine the levels of MSC-derived protection in a larger series of CLL samples and in different laboratories for validation. Collectively, in these co-culture assays we can study CLL-MSC interactions and CLL drugs under more standardized conditions that may allow us to evaluate the efficacy of new treatments that target the CLL microenvironment. Time points 24 hours 48 hours 72 hours +Flu + MSC + MSC +Flu +Flu + MSC + MSC +Flu +Flu +MSC + MSC +Flu M210B4 85.2±2.4 117.2±5.0 110.5±4.9 30.8±12.6 138.1±9.5 113.0±2.2 5.2±3.1 138.1±5.1 120.4±3.4 ST-2 93.6±3.0 99.9±2.6 103.1±0.5 51.6±9.4 111.9±2.6 89.8±8.7 13.9±6.3 112.6±5.7 87.0±16.4 KUM-4 93.6±3.0 106.4±1.8 104.2±1.9 51.6±9.4 112.4±2.6 100.8±2.8 13.9±6.3 111.8±6.7 88.5±11.4 KUSA-H1 79.4±7.4 125.1±3.7 118.2±2.0 33.9±10.9 136.0±3.6 107.2±7.0 11.3±6.1 133.6±5.4 84.9±7.6 Stroma-NKTert 79.3±7.0 118.6±7.0 111.0±7.0 30.5±9.5 130.7±9.5 115.6±8.0 7.1±4.3 133.0±11.5 122.7±9.0 UE6E7-T2 79.3±7.0 113.4±3.9 109.3±3.0 30.5±9.5 118.4±4.8 85.0±7.1 7.1±4.3 119.2±6.9 51.0±10.1 UCB408 E6E7Tert33 81.5±7.2 120.2±5.4 111.8±2.7 36.7±9.4 123.7±6.3 86.7±7.7 8.5±6.7 119.7±6.1 50.8±13.0 Table 1. Flu: fludarabine (10mM/ml), MSC: marrow stromal cells


2013 ◽  
Author(s):  
Sylvia Thiele ◽  
Alexander Rauch ◽  
Jan P Tuckermann ◽  
Lorenz C Hofbauer ◽  
Martina Rauner

Sign in / Sign up

Export Citation Format

Share Document