Heat Transfer Characteristics of Cooling High Temperature Steel Plate by Single Round Jet Impingement

2014 ◽  
Vol 44 (5) ◽  
pp. 410-419
Author(s):  
Gang Zhou ◽  
Zhi Wen ◽  
Ruifeng Dou ◽  
Fuyong Su ◽  
Siqiang Liu ◽  
...  
Author(s):  
C. Y. Lee ◽  
C. J. Fang ◽  
C. H. Peng ◽  
T. W. Lin ◽  
Y. H. Hung

An effective method of design of experiments combined with Central Composite Design for exploring the heat transfer characteristics for a confined rotating Multi-Chip Module (MCM) disk with round jet array impingement has been successfully developed. The relevant parameters influencing heat transfer performance include the steady-state Grashof number (Grs), ratio of jet separation distance to nozzle diameter (H/d), jet Reynolds number (Rej) and rotational Reynolds number (Rer). Their effects on heat transfer characteristics have been systematically explored. An axisymmetrical temperature distribution is ensured for various Grs, Rej, Rer and H/d ratios. As compared with the mutual effects of jet array impingement and disk rotation cause a more non-uniform distribution of chip temperatures. For heat transfer behavior, a new correlation of stagnation Nusselt number for jet array impingement at r/R = 0 in terms of Rej and H/d is presented. As compared with the experimental steady-state data of single round jet impingement, the average heat transfer enhancement at stagnation point r/R = 0 of jet array impingement is 607%. For the rotating MCM disk cases, the highest chip heat transfer occurs at the MCM disk rim, and decreases sharply along the distance from the surface edge toward the surface center.


2018 ◽  
Vol 58 (1) ◽  
pp. 132-139 ◽  
Author(s):  
Bingxing Wang ◽  
Dong Lin ◽  
Bo Zhang ◽  
Lei Xiong ◽  
Zhaodong Wang ◽  
...  

Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Sign in / Sign up

Export Citation Format

Share Document