plate surface
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 75)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 16 (59) ◽  
pp. 78-88
Author(s):  
Krishnaraja Kodancha ◽  
Nagaraj Ekabote ◽  
P P Revankar

The third generation Al-Li alloy AA2050-T84 is widely used in aircraft applications due to its lightweight and significant mechanical properties. The anisotropic variations of tensile and compression properties of this alloy at various temperatures are substantial. In this work, the variations of the J-integral, CTOD, and Plastic Zone Size (PZS) due to anisotropy of a 4-inch thick AA2050-T84 plate at ambient and cryogenic temperatures were studied numerically by using Compact Tension (C(T)) specimen. The material anisotropy resulted in fracture and constraint parameter variation for Mode-I constant load. Numerical results indicated a decrease in crack driving forces and a constraint parameter with the decrease in temperature at the plate surface and central location. Plate surface locations appear to be isotropic for both temperatures under elastic-plastic fracture analyses as crack driving forces were almost identical. The temperature effect is more on constraint as the normalized PZS values at ambient temperature have been twice that of cryogenic temperature. The isotropic behavior of a plate under sub-zero temperature makes the plate suitable for cryogenic temperature applications.


2021 ◽  
Author(s):  
Aldona Skotnicka-Siepsiak

Abstract As a result of the Coanda effect, a symmetrical free jet will flow as an asymmetrical wall jet. At the same time, at the obstacle along which the flow is observed, the wall jet generates pressure distribution. In this study, the obstacle located at the diffuser outlet is a flat plate with a variable inclination angle. The article presents results of the study on pressure distributions on a flat plate with a variable angle of inclination. What is new, however, is that the presented results of the experimental research include the influence of the Coanda effect hysteresis on the pressure distribution on the plate. The article shows how pressure distributions change on the plate depending on whether the initial angle of inclination was 0 degree and was increased gradually in the course of the experiment until a detachment of the jet flowing from the plate was observed, or the initial angle of inclination was close to 90 degrees in the primal state and as the angle of the plate inclination was decreased, the jet flowing towards the plate reached the state of attachment to the plate surface.


2021 ◽  
Vol 42 ◽  
pp. 110-121
Author(s):  
M Lenz ◽  
◽  
P Varga ◽  
D Mischler ◽  
B Gueorguiev ◽  
...  

Single-plate fixation bridging bone defects provokes nonunion and risks plate-fatigue failure due to under- dimensioned implants. Adding a helical plate to bridge the fracture increases stiffness and balances load sharing. This study compares the stiffness and plate surface strain of different constructs in a transverse contact and gap femoral shaft fracture model. Eight groups of six synthetic femora each were formed: intact femora; intact femora with lateral locking plate; contact and gap transverse shaft osteotomies each with lateral locking plate, lateral locking plate and helical locking plate, and long proximal femoral nail. Constructs underwent non-destructive quasi-static axial and torsional loading. Plate surface strain evaluation was performed under 200 N axial loading. Constructs with both lateral and helical plates demonstrated similar axial and torsional stiffness– independent of the contact or gap situations – being significantly higher compared to lateral plating (p < 0.01). Torsional stiffness of the constructs, with both lateral and helical plates in the gap situation, was significantly higher compared to this situation stabilised by a nail (p < 0.01). Plate surface strain dropped from 0.3 % in the gap situation with a lateral plate to < 0.1 % in this situation with both a lateral and a helical plate. Additional helical plating increases axial and torsional construct stiffness in synthetic bone and seems to provide well-balanced load sharing. Its use should be considered in very demanding situations for gap or defect fractures, where single-plate osteosynthesis provides inadequate stiffness for fracture healing and induces nonunion.


2021 ◽  
Author(s):  
Akira Shinozaki ◽  
Junpei Kinoshita

Precision manufacturing techniques are required for the fabrication of small and large optical components in various fields. To prepare molding dies with highly precise geometric shapes and surface roughness that are used in certain molding processes, polishing techniques have been investigated for many materials. In this research, the polishing techniques used for a SUS310S stainless steel molding die for the glass forming technology “slumping method” were investigated. The surface roughness of the polished SUS310S molding die surface was below Rz = 120 nm (P–V), Ra = 20 nm after 35 h of polishing with 0.5% alumina polishing liquid under a pressure of 1.7 kPa. In addition, the centerless polishing machine was designed and manufactured to polish cylindrical molding die surfaces with same polishing conditions. As the result of using cylindrical molding dies that made by this centerless polishing machine, the surface roughness of the glass plate formed using the slumping method with the polished molding die was below Ra = 20 nm. These results indicate that the surface roughness of the molding die had a small effect on the glass plate surface formed using the slumping method.


Sign in / Sign up

Export Citation Format

Share Document