Sensitivity of land surface processes to frozen soil permeability and surface water storage

2002 ◽  
Vol 16 (11) ◽  
pp. 2155-2172 ◽  
Author(s):  
Kumiko Takata
2015 ◽  
Vol 17 (1) ◽  
pp. 309-325 ◽  
Author(s):  
Tian Zhou ◽  
Bart Nijssen ◽  
Huilin Gao ◽  
Dennis P. Lettenmaier

Abstract Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variations is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.25° latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60% of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10% of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72% of combined snow water equivalent and soil moisture storage.


2000 ◽  
Vol 38 (1) ◽  
pp. 117-140 ◽  
Author(s):  
Sharon Nicholson

Author(s):  
Paul A. Dirmeyer ◽  
Pierre Gentine ◽  
Michael B. Ek ◽  
Gianpaolo Balsamo

2021 ◽  
Author(s):  
Theertha Kariyathan ◽  
Wouter Peters ◽  
Julia Marshall ◽  
Ana Bastos ◽  
Markus Reichstein

<p>Carbon dioxide (CO<sub>2</sub>) is an important greenhouse gas, and it accounts for about 20% of the present-day anthropogenic greenhouse effect. Atmospheric CO<sub>2</sub> is cycled between the terrestrial biosphere and the atmosphere through various land-surface processes and thus links the atmosphere and terrestrial biosphere through positive and negative feedback. Since multiple trace gas elements are linked by common biogeochemical processes, multi-species analysis is useful for reinforcing our understanding and can help in partitioning CO<sub>2</sub> fluxes. For example, in the northern hemisphere, CO<sub>2</sub> has a distinct seasonal cycle mainly regulated by plant photosynthesis and respiration and it has a distinct negative correlation with the seasonal cycle of the δ<sup>13</sup>C isotope of CO<sub>2</sub>, due to a stronger isotopic fractionation associated with terrestrial photosynthesis. Therefore, multi-species flask-data measurements are useful for the long-term analysis of various green-house gases. Here we try to infer the complex interaction between the atmosphere and the terrestrial biosphere by multi-species analysis using atmospheric flask measurement data from different NOAA flask measurement sites across the northern hemisphere.</p><p>This study focuses on the long-term changes in the seasonal cycle of CO<sub>2</sub> over the northern hemisphere and tries to attribute the observed changes to driving land-surface processes through a combined analysis of the δ<sup>13</sup>C seasonal cycle. For this we generate metrics of different parameters of the CO<sub>2</sub> and δ<sup>13</sup>C seasonal cycle like the seasonal cycle amplitude given by the peak-to-peak difference of the cycle (indicative of the amount of CO<sub>2</sub> taken up by terrestrial uptake),  the intensity of plant productivity inferred from the slope of the seasonal cycle during the growing season , length of growing season and the start of the growing season. We analyze the inter-relation between these metrics and how they change across latitude and over time. We hypothesize that the CO<sub>2 </sub>seasonal cycle amplitude is controlled both by the intensity of plant productivity and period of the active growing season and that the timing of the growing season can affect the intensity of plant productivity. We then quantify these relationships, including their variation over time and latitudes and describe the effects of an earlier start of the growing season on the intensity of plant productivity and the CO<sub>2</sub> uptake by plants.</p>


Sign in / Sign up

Export Citation Format

Share Document