Multi-site bias correction of climate model outputs for hydro-meteorological impact studies: An application over a watershed in China

2020 ◽  
Vol 34 (11) ◽  
pp. 2575-2598
Author(s):  
Tianhua Su ◽  
Jie Chen ◽  
Alex J. Cannon ◽  
Ping Xie ◽  
Qiang Guo

2013 ◽  
Vol 10 (5) ◽  
pp. 5687-5737 ◽  
Author(s):  
Y. Tramblay ◽  
D. Ruelland ◽  
S. Somot ◽  
R. Bouaicha ◽  
E. Servat

Abstract. In the framework of the international CORDEX program, new regional climate model (RCM) simulations at high spatial resolutions are becoming available for the Mediterranean region (Med-CORDEX initiative). This study provides the first evaluation for hydrological impact studies of these high-resolution simulations. Different approaches are compared to analyze the climate change impacts on the hydrology of a catchment located in North Morocco, using a high-resolution RCM (ALADIN-Climate) from the Med-CORDEX initiative at two different spatial resolutions (50 km and 12 km) and for two different Radiative Concentration Pathway scenarios (RCP4.5 and RCP8.5). The main issues addressed in the present study are: (i) what is the impact of increased RCM resolution on present-climate hydrological simulations and on future projections? (ii) Are the bias-correction of the RCM model and the parameters of the hydrological model stationary and transferable to different climatic conditions? (iii) What is the climate and hydrological change signal based on the new Radiative Concentration Pathways scenarios (RCP4.5 and RCP8.5)? Results indicate that high resolution simulations at 12 km better reproduce the seasonal patterns, the seasonal distributions and the extreme events of precipitation. The parameters of the hydrological model, calibrated to reproduce runoff at the monthly time step over the 1984–2010 period, do not show a strong variability between dry and wet calibration periods in a differential split-sample test. However the bias correction of precipitation by quantile-matching does not give satisfactory results in validation using the same differential split-sample testing method. Therefore a quantile-perturbation method that does not rely on any stationarity assumption and produces ensembles of perturbed series of precipitation was introduced. The climate change signal under scenarios 4.5 and 8.5 indicates a decrease of respectively −30% to −57% in surface runoff for the mid-term (2041–2062), when for the same period the projections for precipitation are ranging between −15% and −19% and for temperature between +1.28°C and +1.87°C.



2012 ◽  
Vol 9 (11) ◽  
pp. 12765-12795 ◽  
Author(s):  
C. Teutschbein ◽  
J. Seibert

Abstract. In hydrological climate-change impact studies, Regional Climate Models (RCMs) are commonly used to transfer large-scale Global Climate Model (GCM) data to smaller scales and to provide more detailed regional information. However, there are often considerable biases in RCM simulations, which have led to the development of a number of bias correction approaches to provide more realistic climate simulations for impact studies. Bias correction procedures rely on the assumption that RCM biases do not change over time, because correction algorithms and their parameterizations are derived for current climate conditions and assumed to apply also for future climate conditions. This underlying assumption of bias stationarity is the main concern when using bias correction procedures. It is in principle not possible to test whether this assumption is actually fulfilled for future climate conditions. In this study, however, we demonstrate that it is possible to evaluate how well bias correction methods perform for conditions different from those used for calibration. For five Swedish catchments, several time series of RCM simulated precipitation and temperature were obtained from the ENSEMBLES data base and different commonly-used bias correction methods were applied. We then performed a differential split-sample test by dividing the data series into cold and warm respective dry and wet years. This enabled us to evaluate the performance of different bias correction procedures under systematically varying climate conditions. The differential split-sample test resulted in a large spread and a clear bias for some of the correction methods during validation years. More advanced correction methods such as distribution mapping performed relatively well even in the validation period, whereas simpler approaches resulted in the largest deviations and least reliable corrections for changed conditions. Therefore, we question the use of simple bias correction methods such as the widely used delta-change approach and linear scaling for RCM-based climate-change impact studies and recommend using higher-skill bias correction methods.



2012 ◽  
Vol 16 (9) ◽  
pp. 3391-3404 ◽  
Author(s):  
U. Ehret ◽  
E. Zehe ◽  
V. Wulfmeyer ◽  
K. Warrach-Sagi ◽  
J. Liebert

Abstract. Despite considerable progress in recent years, output of both global and regional circulation models is still afflicted with biases to a degree that precludes its direct use, especially in climate change impact studies. This is well known, and to overcome this problem, bias correction (BC; i.e. the correction of model output towards observations in a post-processing step) has now become a standard procedure in climate change impact studies. In this paper we argue that BC is currently often used in an invalid way: it is added to the GCM/RCM model chain without sufficient proof that the consistency of the latter (i.e. the agreement between model dynamics/model output and our judgement) as well as the generality of its applicability increases. BC methods often impair the advantages of circulation models by altering spatiotemporal field consistency, relations among variables and by violating conservation principles. Currently used BC methods largely neglect feedback mechanisms, and it is unclear whether they are time-invariant under climate change conditions. Applying BC increases agreement of climate model output with observations in hindcasts and hence narrows the uncertainty range of simulations and predictions without, however, providing a satisfactory physical justification. This is in most cases not transparent to the end user. We argue that this hides rather than reduces uncertainty, which may lead to avoidable forejudging of end users and decision makers. We present here a brief overview of state-of-the-art bias correction methods, discuss the related assumptions and implications, draw conclusions on the validity of bias correction and propose ways to cope with biased output of circulation models in the short term and how to reduce the bias in the long term. The most promising strategy for improved future global and regional circulation model simulations is the increase in model resolution to the convection-permitting scale in combination with ensemble predictions based on sophisticated approaches for ensemble perturbation. With this article, we advocate communicating the entire uncertainty range associated with climate change predictions openly and hope to stimulate a lively discussion on bias correction among the atmospheric and hydrological community and end users of climate change impact studies.



2018 ◽  
Author(s):  
Judith Meyer ◽  
Irene Kohn ◽  
Kerstin Stahl ◽  
Kirsti Hakala ◽  
Jan Seibert ◽  
...  

Abstract. Alpine catchments show a high sensitivity to climate variation as they include the elevation range of the snow line. Therefore, the correct representation of climate variables and their interdependence is crucial when describing or predicting hydrological processes. When using climate model simulations in hydrological impact studies, forcing meteorological data are usually downscaled and bias corrected, most often by univariate approaches such as quantile mapping of individual variables. However, univariate correction neglects the relationships that exist between climate variables. In this study glacio-hydrological simulations were performed for two partly glacierized alpine catchments using a recently developed multivariate bias correction method to post-process EURO-CORDEX regional climate model outputs between 1976 and 2100. These simulations were compared to those obtained by using the common univariate quantile mapping for bias correction. As both methods correct each climate variable’s distribution in the same way, the marginal distributions of the individual variables show no differences. Yet, regarding the interdependence of precipitation and air temperature, clear differences are notable in the studied catchments. Simultaneous correction based on the multivariate approach lead to more precipitation below air temperatures of 0 °C and therefore more simulated snowfall than with the data of the univariate approach. This difference translated to considerable consequences for the hydrological responses of the catchments. The multivariate bias correction forced simulations showed distinctly different results for projected snow cover characteristics, snowmelt-driven streamflow components, and expected glacier disappearance dates in the future. For the historical period the fraction of precipitation above and below 0 °C, the simulated snow water equivalents, glacier volumes, and the streamflow regime resulting from the multivariate-corrected data corresponded better with reference data than the results of univariate bias correction. Differences in simulated total streamflow due to the different bias correction approaches may be considered negligible given the generally large spread of the projections, but systematic differences in the seasonally delayed streamflow components from snowmelt in particular will matter from a planning perspective. While this study does not allow concluding definitively that multivariate bias correction approaches are generally preferable, it clearly demonstrates that incorporating or ignoring inter-variable relationships between air temperature and precipitation data can impact the conclusions drawn in hydrological climate change impact studies.



2016 ◽  
Vol 20 (2) ◽  
pp. 685-696 ◽  
Author(s):  
E. P. Maurer ◽  
D. L. Ficklin ◽  
W. Wang

Abstract. Statistical downscaling is a commonly used technique for translating large-scale climate model output to a scale appropriate for assessing impacts. To ensure downscaled meteorology can be used in climate impact studies, downscaling must correct biases in the large-scale signal. A simple and generally effective method for accommodating systematic biases in large-scale model output is quantile mapping, which has been applied to many variables and shown to reduce biases on average, even in the presence of non-stationarity. Quantile-mapping bias correction has been applied at spatial scales ranging from hundreds of kilometers to individual points, such as weather station locations. Since water resources and other models used to simulate climate impacts are sensitive to biases in input meteorology, there is a motivation to apply bias correction at a scale fine enough that the downscaled data closely resemble historically observed data, though past work has identified undesirable consequences to applying quantile mapping at too fine a scale. This study explores the role of the spatial scale at which the quantile-mapping bias correction is applied, in the context of estimating high and low daily streamflows across the western United States. We vary the spatial scale at which quantile-mapping bias correction is performed from 2° ( ∼  200 km) to 1∕8° ( ∼  12 km) within a statistical downscaling procedure, and use the downscaled daily precipitation and temperature to drive a hydrology model. We find that little additional benefit is obtained, and some skill is degraded, when using quantile mapping at scales finer than approximately 0.5° ( ∼  50 km). This can provide guidance to those applying the quantile-mapping bias correction method for hydrologic impacts analysis.



2013 ◽  
Vol 17 (10) ◽  
pp. 3721-3739 ◽  
Author(s):  
Y. Tramblay ◽  
D. Ruelland ◽  
S. Somot ◽  
R. Bouaicha ◽  
E. Servat

Abstract. In the framework of the international CORDEX program, new regional climate model (RCM) simulations at high spatial resolutions are becoming available for the Mediterranean region (Med-CORDEX initiative). This study provides the first evaluation for hydrological impact studies of one of these high-resolution simulations in a 1800 km2 catchment located in North Morocco. Different approaches are compared to analyze the climate change impacts on the hydrology of this catchment using a high-resolution RCM (ALADIN-Climate) from the Med-CORDEX initiative at two different spatial resolutions (50 and 12 km) and for two different Radiative Concentration Pathway scenarios (RCP4.5 and RCP8.5). The main issues addressed in the present study are: (i) what is the impact of increased RCM resolution on present-climate hydrological simulations and on future projections? (ii) Are the bias-correction of the RCM model and the parameters of the hydrological model stationary and transferable to different climatic conditions? (iii) What is the climate and hydrological change signal based on the new Radiative Concentration Pathways scenarios (RCP4.5 and RCP8.5)? Results indicate that high resolution simulations at 12 km better reproduce the seasonal patterns, the seasonal distributions and the extreme events of precipitation. The parameters of the hydrological model, calibrated to reproduce runoff at the monthly time step over the 1984–2010 period, do not show a strong variability between dry and wet calibration periods in a differential split-sample test. However the bias correction of precipitation by quantile-matching does not give satisfactory results in validation using the same differential split-sample testing method. Therefore a quantile-perturbation method that does not rely on any stationarity assumption and produces ensembles of perturbed series of precipitation was introduced. The climate change signal under scenarios 4.5 and 8.5 indicates a decrease of respectively −30 to −57% in surface runoff for the mid-term (2041–2062), when for the same period the projections for precipitation are ranging between −15 and −19% and for temperature between +1.3 and +1.9 °C.



2012 ◽  
Vol 9 (4) ◽  
pp. 5355-5387 ◽  
Author(s):  
U. Ehret ◽  
E. Zehe ◽  
V. Wulfmeyer ◽  
K. Warrach-Sagi ◽  
J. Liebert

Abstract. Despite considerable progress in recent years, output of both Global and Regional Circulation Models is still afflicted with biases to a degree that precludes its direct use, especially in climate change impact studies. This is well known, and to overcome this problem bias correction (BC), i.e. the correction of model output towards observations in a post processing step for its subsequent application in climate change impact studies has now become a standard procedure. In this paper we argue that bias correction, which has a considerable influence on the results of impact studies, is not a valid procedure in the way it is currently used: it impairs the advantages of Circulation Models which are based on established physical laws by altering spatiotemporal field consistency, relations among variables and by violating conservation principles. Bias correction largely neglects feedback mechanisms and it is unclear whether bias correction methods are time-invariant under climate change conditions. Applying bias correction increases agreement of Climate Model output with observations in hind casts and hence narrows the uncertainty range of simulations and predictions without, however, providing a satisfactory physical justification. This is in most cases not transparent to the end user. We argue that this masks rather than reduces uncertainty, which may lead to avoidable forejudging of end users and decision makers. We present here a brief overview of state-of-the-art bias correction methods, discuss the related assumptions and implications, draw conclusions on the validity of bias correction and propose ways to cope with biased output of Circulation Models in the short term and how to reduce the bias in the long term. The most promising strategy for improved future Global and Regional Circulation Model simulations is the increase in model resolution to the convection-permitting scale in combination with ensemble predictions based on sophisticated approaches for ensemble perturbation. With this article, we advocate communicating the entire uncertainty range associated with climate change predictions openly and hope to stimulate a lively discussion on bias correction among the atmospheric and hydrological community and end users of climate change impact studies.



2015 ◽  
Vol 12 (10) ◽  
pp. 10893-10920 ◽  
Author(s):  
E. P. Maurer ◽  
D. L. Ficklin ◽  
W. Wang

Abstract. Statistical downscaling is a commonly used technique for translating large-scale climate model output to a scale appropriate for assessing impacts. To ensure downscaled meteorology can be used in climate impact studies, downscaling must correct biases in the large-scale signal. A simple and generally effective method for accommodating systematic biases in large-scale model output is quantile mapping, which has been applied to many variables and shown to reduce biases on average, even in the presence of non-stationarity. Quantile mapping bias correction has been applied at spatial scales ranging from areas of hundreds of kilometers to individual points, such as weather station locations. Since water resources and other models used to simulate climate impacts are sensitive to biases in input meteorology, there is a motivation to apply bias correction at a scale fine enough that the downscaled data closely resembles historically observed data, though past work has identified undesirable consequences to applying quantile mapping at too fine a scale. This study explores the role of the spatial scale at which the quantile-mapping bias correction is applied, in the context of estimating high and low daily streamflows across the Western United States. We vary the spatial scale at which quantile mapping bias correction is performed from 2° (∼ 200 km) to 1/8° (∼ 12 km) within a statistical downscaling procedure, and use the downscaled daily precipitation and temperature to drive a hydrology model. We find that little additional benefit is obtained, and some skill is degraded, when using quantile mapping at scales finer than approximately 0.5° (∼ 50 km). This can provide guidance to those applying the quantile mapping bias correction method for hydrologic impacts analysis.



2019 ◽  
Vol 23 (3) ◽  
pp. 1339-1354 ◽  
Author(s):  
Judith Meyer ◽  
Irene Kohn ◽  
Kerstin Stahl ◽  
Kirsti Hakala ◽  
Jan Seibert ◽  
...  

Abstract. Alpine catchments show a high sensitivity to climate variation as they include the elevation range of the snow line. Therefore, the correct representation of climate variables and their interdependence is crucial when describing or predicting hydrological processes. When using climate model simulations in hydrological impact studies, forcing meteorological data are usually downscaled and bias corrected, most often by univariate approaches such as quantile mapping of individual variables, neglecting the relationships that exist between climate variables. In this study we test the hypothesis that the explicit consideration of the relation between air temperature and precipitation will affect hydrological impact modelling in a snow-dominated mountain environment. Glacio-hydrological simulations were performed for two partly glacierized alpine catchments using a recently developed multivariate bias correction method to post-process EURO-CORDEX regional climate model outputs between 1976 and 2099. These simulations were compared to those obtained by using the common univariate quantile mapping for bias correction. As both methods correct each climate variable's distribution in the same way, the marginal distributions of the individual variables show no differences. Yet, regarding the interdependence of precipitation and air temperature, clear differences are notable in the studied catchments. Simultaneous correction based on the multivariate approach led to more precipitation below air temperatures of 0 ∘C and therefore more simulated snowfall than with the data of the univariate approach. This difference translated to considerable consequences for the hydrological responses of the catchments. The multivariate bias-correction-forced simulations showed distinctly different results for projected snow cover characteristics, snowmelt-driven streamflow components, and expected glacier disappearance dates. In all aspects – the fraction of precipitation above and below 0 ∘C, the simulated snow water equivalents, glacier volumes, and the streamflow regime – simulations resulting from the multivariate-corrected data corresponded better with reference data than the results of univariate bias correction. Differences in simulated total streamflow due to the different bias correction approaches may be considered negligible given the generally large spread of the projections, but systematic differences in the seasonally delayed streamflow components from snowmelt in particular will matter from a planning perspective. While this study does not allow conclusive evidence that multivariate bias correction approaches are generally preferable, it clearly demonstrates that incorporating or ignoring inter-variable relationships between air temperature and precipitation data can impact the conclusions drawn in hydrological climate change impact studies in snow-dominated environments.



Sign in / Sign up

Export Citation Format

Share Document