scholarly journals Effects of univariate and multivariate bias correction on hydrological impact projections in alpine catchments

Author(s):  
Judith Meyer ◽  
Irene Kohn ◽  
Kerstin Stahl ◽  
Kirsti Hakala ◽  
Jan Seibert ◽  
...  

Abstract. Alpine catchments show a high sensitivity to climate variation as they include the elevation range of the snow line. Therefore, the correct representation of climate variables and their interdependence is crucial when describing or predicting hydrological processes. When using climate model simulations in hydrological impact studies, forcing meteorological data are usually downscaled and bias corrected, most often by univariate approaches such as quantile mapping of individual variables. However, univariate correction neglects the relationships that exist between climate variables. In this study glacio-hydrological simulations were performed for two partly glacierized alpine catchments using a recently developed multivariate bias correction method to post-process EURO-CORDEX regional climate model outputs between 1976 and 2100. These simulations were compared to those obtained by using the common univariate quantile mapping for bias correction. As both methods correct each climate variable’s distribution in the same way, the marginal distributions of the individual variables show no differences. Yet, regarding the interdependence of precipitation and air temperature, clear differences are notable in the studied catchments. Simultaneous correction based on the multivariate approach lead to more precipitation below air temperatures of 0 °C and therefore more simulated snowfall than with the data of the univariate approach. This difference translated to considerable consequences for the hydrological responses of the catchments. The multivariate bias correction forced simulations showed distinctly different results for projected snow cover characteristics, snowmelt-driven streamflow components, and expected glacier disappearance dates in the future. For the historical period the fraction of precipitation above and below 0 °C, the simulated snow water equivalents, glacier volumes, and the streamflow regime resulting from the multivariate-corrected data corresponded better with reference data than the results of univariate bias correction. Differences in simulated total streamflow due to the different bias correction approaches may be considered negligible given the generally large spread of the projections, but systematic differences in the seasonally delayed streamflow components from snowmelt in particular will matter from a planning perspective. While this study does not allow concluding definitively that multivariate bias correction approaches are generally preferable, it clearly demonstrates that incorporating or ignoring inter-variable relationships between air temperature and precipitation data can impact the conclusions drawn in hydrological climate change impact studies.

2019 ◽  
Vol 23 (3) ◽  
pp. 1339-1354 ◽  
Author(s):  
Judith Meyer ◽  
Irene Kohn ◽  
Kerstin Stahl ◽  
Kirsti Hakala ◽  
Jan Seibert ◽  
...  

Abstract. Alpine catchments show a high sensitivity to climate variation as they include the elevation range of the snow line. Therefore, the correct representation of climate variables and their interdependence is crucial when describing or predicting hydrological processes. When using climate model simulations in hydrological impact studies, forcing meteorological data are usually downscaled and bias corrected, most often by univariate approaches such as quantile mapping of individual variables, neglecting the relationships that exist between climate variables. In this study we test the hypothesis that the explicit consideration of the relation between air temperature and precipitation will affect hydrological impact modelling in a snow-dominated mountain environment. Glacio-hydrological simulations were performed for two partly glacierized alpine catchments using a recently developed multivariate bias correction method to post-process EURO-CORDEX regional climate model outputs between 1976 and 2099. These simulations were compared to those obtained by using the common univariate quantile mapping for bias correction. As both methods correct each climate variable's distribution in the same way, the marginal distributions of the individual variables show no differences. Yet, regarding the interdependence of precipitation and air temperature, clear differences are notable in the studied catchments. Simultaneous correction based on the multivariate approach led to more precipitation below air temperatures of 0 ∘C and therefore more simulated snowfall than with the data of the univariate approach. This difference translated to considerable consequences for the hydrological responses of the catchments. The multivariate bias-correction-forced simulations showed distinctly different results for projected snow cover characteristics, snowmelt-driven streamflow components, and expected glacier disappearance dates. In all aspects – the fraction of precipitation above and below 0 ∘C, the simulated snow water equivalents, glacier volumes, and the streamflow regime – simulations resulting from the multivariate-corrected data corresponded better with reference data than the results of univariate bias correction. Differences in simulated total streamflow due to the different bias correction approaches may be considered negligible given the generally large spread of the projections, but systematic differences in the seasonally delayed streamflow components from snowmelt in particular will matter from a planning perspective. While this study does not allow conclusive evidence that multivariate bias correction approaches are generally preferable, it clearly demonstrates that incorporating or ignoring inter-variable relationships between air temperature and precipitation data can impact the conclusions drawn in hydrological climate change impact studies in snow-dominated environments.


2013 ◽  
Vol 10 (5) ◽  
pp. 5687-5737 ◽  
Author(s):  
Y. Tramblay ◽  
D. Ruelland ◽  
S. Somot ◽  
R. Bouaicha ◽  
E. Servat

Abstract. In the framework of the international CORDEX program, new regional climate model (RCM) simulations at high spatial resolutions are becoming available for the Mediterranean region (Med-CORDEX initiative). This study provides the first evaluation for hydrological impact studies of these high-resolution simulations. Different approaches are compared to analyze the climate change impacts on the hydrology of a catchment located in North Morocco, using a high-resolution RCM (ALADIN-Climate) from the Med-CORDEX initiative at two different spatial resolutions (50 km and 12 km) and for two different Radiative Concentration Pathway scenarios (RCP4.5 and RCP8.5). The main issues addressed in the present study are: (i) what is the impact of increased RCM resolution on present-climate hydrological simulations and on future projections? (ii) Are the bias-correction of the RCM model and the parameters of the hydrological model stationary and transferable to different climatic conditions? (iii) What is the climate and hydrological change signal based on the new Radiative Concentration Pathways scenarios (RCP4.5 and RCP8.5)? Results indicate that high resolution simulations at 12 km better reproduce the seasonal patterns, the seasonal distributions and the extreme events of precipitation. The parameters of the hydrological model, calibrated to reproduce runoff at the monthly time step over the 1984–2010 period, do not show a strong variability between dry and wet calibration periods in a differential split-sample test. However the bias correction of precipitation by quantile-matching does not give satisfactory results in validation using the same differential split-sample testing method. Therefore a quantile-perturbation method that does not rely on any stationarity assumption and produces ensembles of perturbed series of precipitation was introduced. The climate change signal under scenarios 4.5 and 8.5 indicates a decrease of respectively −30% to −57% in surface runoff for the mid-term (2041–2062), when for the same period the projections for precipitation are ranging between −15% and −19% and for temperature between +1.28°C and +1.87°C.


2016 ◽  
Vol 20 (2) ◽  
pp. 685-696 ◽  
Author(s):  
E. P. Maurer ◽  
D. L. Ficklin ◽  
W. Wang

Abstract. Statistical downscaling is a commonly used technique for translating large-scale climate model output to a scale appropriate for assessing impacts. To ensure downscaled meteorology can be used in climate impact studies, downscaling must correct biases in the large-scale signal. A simple and generally effective method for accommodating systematic biases in large-scale model output is quantile mapping, which has been applied to many variables and shown to reduce biases on average, even in the presence of non-stationarity. Quantile-mapping bias correction has been applied at spatial scales ranging from hundreds of kilometers to individual points, such as weather station locations. Since water resources and other models used to simulate climate impacts are sensitive to biases in input meteorology, there is a motivation to apply bias correction at a scale fine enough that the downscaled data closely resemble historically observed data, though past work has identified undesirable consequences to applying quantile mapping at too fine a scale. This study explores the role of the spatial scale at which the quantile-mapping bias correction is applied, in the context of estimating high and low daily streamflows across the western United States. We vary the spatial scale at which quantile-mapping bias correction is performed from 2° ( ∼  200 km) to 1∕8° ( ∼  12 km) within a statistical downscaling procedure, and use the downscaled daily precipitation and temperature to drive a hydrology model. We find that little additional benefit is obtained, and some skill is degraded, when using quantile mapping at scales finer than approximately 0.5° ( ∼  50 km). This can provide guidance to those applying the quantile-mapping bias correction method for hydrologic impacts analysis.


2013 ◽  
Vol 17 (10) ◽  
pp. 3721-3739 ◽  
Author(s):  
Y. Tramblay ◽  
D. Ruelland ◽  
S. Somot ◽  
R. Bouaicha ◽  
E. Servat

Abstract. In the framework of the international CORDEX program, new regional climate model (RCM) simulations at high spatial resolutions are becoming available for the Mediterranean region (Med-CORDEX initiative). This study provides the first evaluation for hydrological impact studies of one of these high-resolution simulations in a 1800 km2 catchment located in North Morocco. Different approaches are compared to analyze the climate change impacts on the hydrology of this catchment using a high-resolution RCM (ALADIN-Climate) from the Med-CORDEX initiative at two different spatial resolutions (50 and 12 km) and for two different Radiative Concentration Pathway scenarios (RCP4.5 and RCP8.5). The main issues addressed in the present study are: (i) what is the impact of increased RCM resolution on present-climate hydrological simulations and on future projections? (ii) Are the bias-correction of the RCM model and the parameters of the hydrological model stationary and transferable to different climatic conditions? (iii) What is the climate and hydrological change signal based on the new Radiative Concentration Pathways scenarios (RCP4.5 and RCP8.5)? Results indicate that high resolution simulations at 12 km better reproduce the seasonal patterns, the seasonal distributions and the extreme events of precipitation. The parameters of the hydrological model, calibrated to reproduce runoff at the monthly time step over the 1984–2010 period, do not show a strong variability between dry and wet calibration periods in a differential split-sample test. However the bias correction of precipitation by quantile-matching does not give satisfactory results in validation using the same differential split-sample testing method. Therefore a quantile-perturbation method that does not rely on any stationarity assumption and produces ensembles of perturbed series of precipitation was introduced. The climate change signal under scenarios 4.5 and 8.5 indicates a decrease of respectively −30 to −57% in surface runoff for the mid-term (2041–2062), when for the same period the projections for precipitation are ranging between −15 and −19% and for temperature between +1.3 and +1.9 °C.


Author(s):  
M. S. Saranya ◽  
V. Nair Vinish

Abstract It is well recognised that the performance of climate model simulations and bias correction methods is region specific, and, therefore, careful validation should always be performed. This study evaluates the performance of five general circulation model–regional climate model (GCM–RCM) combinations selected from CORDEX–SA datasets over a humid tropical river basin in Kerala, India, for climate variables such as precipitation, maximum and minimum temperatures. This involves ranking of the selected climate models based on an EDAS (Evaluation Based on Distance from Average Solution) method and the selection of an appropriate bias correction method for the selected three climate variables. A range of indices are used to evaluate the performance of the bias-corrected climate models to simulate observed climate data. Finally, the hydrological impact of the bias-corrected ranked models is assessed by simulating streamflow over the river basin using individual models and different combinations of models based on rank. According to the findings, hydrological simulation using an average of all GCM–RCM pairs provides the best model output in simulating streamflow, with an NSE value of 0.72. The results confirm the importance of a multimodel ensemble for improving the reliability and minimising the uncertainty of climate predictions for impact studies.


2015 ◽  
Vol 12 (10) ◽  
pp. 10893-10920 ◽  
Author(s):  
E. P. Maurer ◽  
D. L. Ficklin ◽  
W. Wang

Abstract. Statistical downscaling is a commonly used technique for translating large-scale climate model output to a scale appropriate for assessing impacts. To ensure downscaled meteorology can be used in climate impact studies, downscaling must correct biases in the large-scale signal. A simple and generally effective method for accommodating systematic biases in large-scale model output is quantile mapping, which has been applied to many variables and shown to reduce biases on average, even in the presence of non-stationarity. Quantile mapping bias correction has been applied at spatial scales ranging from areas of hundreds of kilometers to individual points, such as weather station locations. Since water resources and other models used to simulate climate impacts are sensitive to biases in input meteorology, there is a motivation to apply bias correction at a scale fine enough that the downscaled data closely resembles historically observed data, though past work has identified undesirable consequences to applying quantile mapping at too fine a scale. This study explores the role of the spatial scale at which the quantile-mapping bias correction is applied, in the context of estimating high and low daily streamflows across the Western United States. We vary the spatial scale at which quantile mapping bias correction is performed from 2° (∼ 200 km) to 1/8° (∼ 12 km) within a statistical downscaling procedure, and use the downscaled daily precipitation and temperature to drive a hydrology model. We find that little additional benefit is obtained, and some skill is degraded, when using quantile mapping at scales finer than approximately 0.5° (∼ 50 km). This can provide guidance to those applying the quantile mapping bias correction method for hydrologic impacts analysis.


Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2018 ◽  
Vol 22 (6) ◽  
pp. 3175-3196 ◽  
Author(s):  
Mathieu Vrac

Abstract. Climate simulations often suffer from statistical biases with respect to observations or reanalyses. It is therefore common to correct (or adjust) those simulations before using them as inputs into impact models. However, most bias correction (BC) methods are univariate and so do not account for the statistical dependences linking the different locations and/or physical variables of interest. In addition, they are often deterministic, and stochasticity is frequently needed to investigate climate uncertainty and to add constrained randomness to climate simulations that do not possess a realistic variability. This study presents a multivariate method of rank resampling for distributions and dependences (R2D2) bias correction allowing one to adjust not only the univariate distributions but also their inter-variable and inter-site dependence structures. Moreover, the proposed R2D2 method provides some stochasticity since it can generate as many multivariate corrected outputs as the number of statistical dimensions (i.e., number of grid cell  ×  number of climate variables) of the simulations to be corrected. It is based on an assumption of stability in time of the dependence structure – making it possible to deal with a high number of statistical dimensions – that lets the climate model drive the temporal properties and their changes in time. R2D2 is applied on temperature and precipitation reanalysis time series with respect to high-resolution reference data over the southeast of France (1506 grid cell). Bivariate, 1506-dimensional and 3012-dimensional versions of R2D2 are tested over a historical period and compared to a univariate BC. How the different BC methods behave in a climate change context is also illustrated with an application to regional climate simulations over the 2071–2100 period. The results indicate that the 1d-BC basically reproduces the climate model multivariate properties, 2d-R2D2 is only satisfying in the inter-variable context, 1506d-R2D2 strongly improves inter-site properties and 3012d-R2D2 is able to account for both. Applications of the proposed R2D2 method to various climate datasets are relevant for many impact studies. The perspectives of improvements are numerous, such as introducing stochasticity in the dependence itself, questioning its stability assumption, and accounting for temporal properties adjustment while including more physics in the adjustment procedures.


2021 ◽  
Vol 60 (4) ◽  
pp. 455-475
Author(s):  
Maike F. Holthuijzen ◽  
Brian Beckage ◽  
Patrick J. Clemins ◽  
Dave Higdon ◽  
Jonathan M. Winter

AbstractHigh-resolution, bias-corrected climate data are necessary for climate impact studies at local scales. Gridded historical data are convenient for bias correction but may contain biases resulting from interpolation. Long-term, quality-controlled station data are generally superior climatological measurements, but because the distribution of climate stations is irregular, station data are challenging to incorporate into downscaling and bias-correction approaches. Here, we compared six novel methods for constructing full-coverage, high-resolution, bias-corrected climate products using daily maximum temperature simulations from a regional climate model (RCM). Only station data were used for bias correction. We quantified performance of the six methods with the root-mean-square-error (RMSE) and Perkins skill score (PSS) and used two ANOVA models to analyze how performance varied among methods. We validated the six methods using two calibration periods of observed data (1980–89 and 1980–2014) and two testing sets of RCM data (1990–2014 and 1980–2014). RMSE for all methods varied throughout the year and was larger in cold months, whereas PSS was more consistent. Quantile-mapping bias-correction techniques substantially improved PSS, while simple linear transfer functions performed best in improving RMSE. For the 1980–89 calibration period, simple quantile-mapping techniques outperformed empirical quantile mapping (EQM) in improving PSS. When calibration and testing time periods were equivalent, EQM resulted in the largest improvements in PSS. No one method performed best in both RMSE and PSS. Our results indicate that simple quantile-mapping techniques are less prone to overfitting than EQM and are suitable for processing future climate model output, whereas EQM is ideal for bias correcting historical climate model output.


2020 ◽  
Vol 47 (3) ◽  
pp. 326-336
Author(s):  
Mohammad Madani ◽  
Vinod Chilkoti ◽  
Tirupati Bolisetti ◽  
Rajesh Seth

In most of the climate change impact assessment studies, climate model bias is considered to be stationary between the control and scenario periods. Few methods are found in the literature that addresses the issue of nonstationarity in correcting the bias. To overcome the shortcomings reported in these approaches, three new methods of bias correction (NBC_μ, NBC_σ, and NBC_bs) are presented. The methods are improvised versions of previous techniques relying on distribution mapping. The methods are tested using split sample approach over 50-year historical period for nine climate stations in Ontario, using six regional climate models. The average bias reduction improvement by new methods, in mean daily and monthly precipitation, was found to be 73.9%, 74.3%, and 77.4%, respectively, higher than that obtained by the previous methods (eQM 67.7% and CNCDFm_NP 64.1%). Thus, the methods are found to be more effective in accounting for nonstationarity in the model bias.


Sign in / Sign up

Export Citation Format

Share Document