scholarly journals Expression of core 3 synthase in human pancreatic cancer cells suppresses tumor growth and metastasis

2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Prakash Radhakrishnan ◽  
Paul M. Grandgenett ◽  
Ashley M. Mohr ◽  
Stephanie K. Bunt ◽  
Fang Yu ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan Wang ◽  
Xiong-Fei Zhang ◽  
Dong-Yan Wang ◽  
Yi Zhu ◽  
Lei Chen ◽  
...  

AbstractPancreatic cancer is a highly aggressive and lethal digestive system malignancy. Our previous studies revealed the correlation of high levels of lncRNA SOX2OT expression with patients’ poor survival outcomes, the promoting role of SOX2OT in proliferation and cycle progression of pancreatic cancer cells, and the in vivo binding of SOX2OT to RNA binding protein FUS, which destabilized the protein expression of FUS. However, the mechanism of SOX2OT binding and inhibiting FUS protein stability remains unclear. In this study, we performed RNA pull-down, cycloheximide-chase, and ubiquitination assays to determine the effect of SOX2OT on FUS ubiquitination, and explored the specific regulatory mechanism of SOX2OT–FUS axis in pancreatic cancer cell migration, invasion, in vivo tumor growth, and metastasis through RNA sequencing. We found that SOX2OT binds to FUS through its 5′ and 3′ regions, resulting in FUS ubiquitination and degradation. The SOX2OT–FUS regulatory axis promotes migration, invasion, tumor growth, and metastasis ability of pancreatic cancer cells. The in-depth elaboration of the SOX2OT–FUS regulatory axis in pancreatic cancer may clarify the mechanism of action of SOX2OT and provide new ideas for pancreatic cancer treatment.


2017 ◽  
Vol 37 (18) ◽  
Author(s):  
Ayano Kondo ◽  
Aya Nonaka ◽  
Teppei Shimamura ◽  
Shogo Yamamoto ◽  
Tetsuo Yoshida ◽  
...  

ABSTRACT Long noncoding RNAs play a pivotal role in tumor progression, but their role in cancer cells in the nutrient-starved tumor microenvironment remains unknown. Here, we show that a nutrient starvation-responsive long noncoding RNA, JHDM1D antisense 1 (JHDM1D-AS1), promotes tumorigenesis by regulating angiogenesis in response to nutrient starvation. Expression of JHDM1D-AS1 was increased in cancer cells. In addition, expression of JHDM1D-AS1 was increased in clinical tumor samples compared to that in normal tissue. Stable expression of JHDM1D-AS1 in human pancreatic cancer (PANC-1 and AsPC-1) cells promoted cell growth in vitro. Remarkably, these JHDM1D-AS1-expressing cells showed a significant increase in tumor growth in vivo that was associated with increased formation of CD31+ blood vessels and elevated infiltration of CD11b+ macrophage lineage cells into tumor tissues. Genome-wide analysis of tumor xenografts revealed that expression of genes for tumor-derived angiogenic factors such as hHGF and hFGF1 concomitant with host-derived inflammation-responsive genes such as mMmp3, mMmp9, mS100a8, and mS100a9 was increased in tumor xenografts of JHDM1D-AS1-expressing pancreatic cancer cells, leading to a poor prognosis. Our results provide evidence that increased JHDM1D-AS1 expression under nutrient starvation accelerates tumor growth by upregulating angiogenesis, thus laying the foundation for improved therapeutic strategies.


2005 ◽  
Vol 65 (7) ◽  
pp. 2899-2905 ◽  
Author(s):  
Tatsuo Hata ◽  
Toru Furukawa ◽  
Makoto Sunamura ◽  
Shinichi Egawa ◽  
Fuyuhiko Motoi ◽  
...  

2018 ◽  
Vol 155 (6) ◽  
pp. 1985-1998.e5 ◽  
Author(s):  
Mouad Edderkaoui ◽  
Chintan Chheda ◽  
Badr Soufi ◽  
Fouzia Zayou ◽  
Robert W. Hu ◽  
...  

2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document