antitumor efficacy
Recently Published Documents





Nanoscale ◽  
2022 ◽  
Yuan Xue ◽  
Shuting Bai ◽  
Leilei Wang ◽  
Shi Luo ◽  
Zhirong Zhang ◽  

A good photosensitizer (PS) delivery system could enhance efficiency and reduce side effects of anti-tumor photodynamic therapy (PDT) by improving accumulation in tumor, uptake by tumor cells, and intracellular release...

2022 ◽  
Vol 10 (1) ◽  
pp. e003078
Aubrey S Smith ◽  
Hannah M Knochelmann ◽  
Megan M Wyatt ◽  
Guillermo O Rangel Rivera ◽  
Amalia M Rivera-Reyes ◽  

BackgroundAdoptive T cell transfer (ACT) therapy improves outcomes in patients with advanced malignancies, yet many individuals relapse due to the infusion of T cells with poor function or persistence. Toll-like receptor (TLR) agonists can invigorate antitumor T cell responses when administered directly to patients, but these responses often coincide with toxicities. We posited that TLR agonists could be repurposed ex vivo to condition T cells with remarkable potency in vivo, circumventing TLR-related toxicity.MethodsIn this study we investigated how tumor-specific murine CD8+ T cells and human tumor infiltrating lymphocytes (TILs) are impacted when expanded ex vivo with the TLR9 agonist CpG.ResultsHerein we reveal a new way to reverse the tolerant state of adoptively transferred CD8+ T cells against tumors using TLR-activated B cells. We repurposed the TLR9 agonist, CpG, commonly used in the clinic, to bolster T cell—B cell interactions during expansion for ACT. T cells expanded ex vivo from a CpG-treated culture demonstrated potent antitumor efficacy and prolonged persistence in vivo. This antitumor efficacy was accomplished without in vivo administration of TLR agonists or other adjuvants of high-dose interleukin (IL)-2 or vaccination, which are classically required for effective ACT therapy. CpG-conditioned CD8+ T cells acquired a unique proteomic signature hallmarked by an IL-2RαhighICOShighCD39low phenotype and an altered metabolic profile, all reliant on B cells transiently present in the culture. Likewise, human TILs benefitted from expansion with CpG ex vivo, as they also possessed the IL-2RαhighICOShighCD39low phenotype. CpG fostered the expansion of potent CD8+ T cells with the signature phenotype and antitumor ability via empowering a direct B–T cell interaction. Isolated B cells also imparted T cells with the CpG-associated phenotype and improved tumor immunity without the aid of additional antigen-presenting cells or other immune cells in the culture.ConclusionsOur results demonstrate a novel way to use TLR agonists to improve immunotherapy and reveal a vital role for B cells in the generation of potent CD8+ T cell-based therapies. Our findings have immediate implications in the clinical treatment of advanced solid tumors.

Jia Zeng ◽  
Christian X. Cruz-Pico ◽  
Turçin Saridogan ◽  
Md Abu Shufean ◽  
Michael Kahle ◽  

PURPOSE Despite advances in molecular therapeutics, few anticancer agents achieve durable responses. Rational combinations using two or more anticancer drugs have the potential to achieve a synergistic effect and overcome drug resistance, enhancing antitumor efficacy. A publicly accessible biomedical literature search engine dedicated to this domain will facilitate knowledge discovery and reduce manual search and review. METHODS We developed RetriLite, an information retrieval and extraction framework that leverages natural language processing and domain-specific knowledgebase to computationally identify highly relevant papers and extract key information. The modular architecture enables RetriLite to benefit from synergizing information retrieval and natural language processing techniques while remaining flexible to customization. We customized the application and created an informatics pipeline that strategically identifies papers that describe efficacy of using combination therapies in clinical or preclinical studies. RESULTS In a small pilot study, RetriLite achieved an F 1 score of 0.93. A more extensive validation experiment was conducted to determine agents that have enhanced antitumor efficacy in vitro or in vivo with poly (ADP-ribose) polymerase inhibitors: 95.9% of the papers determined to be relevant by our application were true positive and the application's feature of distinguishing a clinical paper from a preclinical paper achieved an accuracy of 97.6%. Interobserver assessment was conducted, which resulted in a 100% concordance. The data derived from the informatics pipeline have also been made accessible to the public via a dedicated online search engine with an intuitive user interface. CONCLUSION RetriLite is a framework that can be applied to establish domain-specific information retrieval and extraction systems. The extensive and high-quality metadata tags along with keyword highlighting facilitate information seekers to more effectively and efficiently discover knowledge in the combination therapy domain.

2021 ◽  
Minjiang Chen ◽  
Jie Li ◽  
Gaofeng Shu ◽  
Lin Shen ◽  
Enqi Qiao ◽  

Abstract Transcatheter arterial chemoembolization (TACE) is one of the main palliative therapies for advanced hepatocellular carcinoma (HCC), which is also regarded as a promising therapeutic strategy for cancer treatment. However, drug-loaded microspheres (DLMs), as commonly used clinical chemoembolization drugs, still have the problems of uneven particle size and unstable therapeutic efficacy. Herein, gelatin was used as the wall material of the microspheres, and homogenous gelatin microspheres co-loaded with adriamycin and Fe3O4 nanoparticles (ADM/Fe3O4-MS) were further prepared by a high-voltage electrospray technology. The introduction of Fe3O4 nanoparticles into DLMs not only provided excellent T2-weighted magnetic resonance imaging (MRI) properties, but also improved the anti-tumor effectiveness under microwave-induced hyperthermia. The results showed that ADM/Fe3O4-MS plus microwave irradiation had significantly better antitumor efficacy than the other types of microspheres at both cell and animal levels. Our study further confirmed that ferroptosis was involved in the anti-tumor process of ADM/Fe3O4-MS plus microwave irradiation, and ferroptosis marker GPX4 was significantly decreased and ACSL4 was significantly increased, and ferroptosis inhibitors could reverse the tumor cell killing effect caused by ADM/Fe3O4-MS to a certain extent. Our results confirmed that microwave mediated hyperthermia could amplify the antitumor efficacy of ADM/Fe3O4-MS by activating ferroptosis and the introduction of Fe3O4 nanoparticles can significantly improve TACE for HCC. This study confirmed that it was feasible to use uniform-sized gelatin microspheres co-loaded with Fe3O4 nanoparticles and adriamycin to enhance the efficacy of TACE for HCC.

2021 ◽  
Vol 12 ◽  
Xueyan Li ◽  
Jiahui Zhong ◽  
Xue Deng ◽  
Xuan Guo ◽  
Yantong Lu ◽  

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are activated under pathological conditions, such as cancer, or mature myeloid cells that are converted immune-suppressive cells via tumor-derived exosomes, and potently support the tumor processes at different levels. Currently, multiple studies have demonstrated that MDSCs induce immune checkpoint blockade (ICB) therapy resistance through their contribution to the immunosuppressive network in the tumor microenvironment. In addition, non-immunosuppressive mechanisms of MDSCs such as promotion of angiogenesis and induction of cancer stem cells also exert a powerful role in tumor progression. Thus, MDSCs are potential therapeutic targets to enhance the antitumor efficacy of ICB therapy in cases of multiple cancers. This review focuses on the tumor-promoting mechanism of MDSCs and provides an overview of current strategies that target MDSCs with the objective of enhancing the antitumor efficacy of ICB therapy.

2021 ◽  
Vol 8 ◽  
Yaru Nai ◽  
Li Du ◽  
Meiying Shen ◽  
Tingting Li ◽  
Jingjing Huang ◽  

Tumor necrosis factor–related apoptosis-inducing ligand receptor 1 (TRAIL-R1) has limited expression in normal tissues but was highly expressed in various types of tumors, making it an attractive target for cancer immunotherapy. Here, we utilized the single-chain variable fragment (scFv) from our previously identified TRAIL-R1–targeting monoclonal antibody (TR1419) with antitumor efficacy and produced the TR1419 chimeric antigen receptor (CAR) T cells. We characterized the phenotypes and functions of these CAR-T cells and found that the third-generation TR1419-28BBζ CAR-T cells exhibited greater target sensitivity and proliferative capability, with slightly higher PD-1 expression after antigen stimulation. Importantly, we found that the TR1419 CAR-T cells could induce TRAIL-R1–positive tumor cell death via a dual mechanism of the death receptor–dependent apoptosis as well as the T-cell–mediated cytotoxicity. Altogether, the TR1419 CAR-T cells could serve as a promising strategy for targeting the TRAIL-R1–positive tumors.

Sign in / Sign up

Export Citation Format

Share Document