Portfolio selection as a multicriteria group decision making in Pythagorean fuzzy environment with GRA and FAHP framework

Author(s):  
Tapas Kumar Paul ◽  
Madhumangal Pal ◽  
Chiranjibe Jana
2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Chunqiao Tan ◽  
Xiaohong Chen

An effective decision making approach based on VIKOR and Choquet integral is developed to solve multicriteria group decision making problem with conflicting criteria and interdependent subjective preference of decision makers in a fuzzy environment where preferences of decision makers with respect to criteria are represented by interval-valued intuitionistic fuzzy sets. First, an interval-valued intuitionistic fuzzy Choquet integral operator is given. Some of its properties are investigated in detail. The extended VIKOR decision procedure based on the proposed operator is developed for solving the multicriteria group decision making problem where the interactive criteria weight is measured by Shapley value. An illustrative example is given for demonstrating the applicability of the proposed decision procedure for solving the multi-criteria group decision making problem in interval-valued intuitionistic fuzzy environment.


2016 ◽  
Vol 100 ◽  
pp. 848-855
Author(s):  
Michael Emmerich ◽  
André Deutz ◽  
Longmei Li ◽  
Asep Maulana ◽  
Iryna Yevseyeva

2021 ◽  
Vol 566 ◽  
pp. 38-56
Author(s):  
Qianlei Jia ◽  
Jiayue Hu ◽  
Qizhi He ◽  
Weiguo Zhang ◽  
Ehab Safwat

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 486 ◽  
Author(s):  
Jie Wang ◽  
Guiwu Wei ◽  
Mao Lu

In this article, we extend the original TODIM (Portuguese acronym for Interactive Multi-Criteria Decision Making) method to the 2-tuple linguistic neutrosophic fuzzy environment to propose the 2TLNNs TODIM method. In the extended method, we use 2-tuple linguistic neutrosophic numbers (2TLNNs) to present the criteria values in multiple attribute group decision making (MAGDM) problems. Firstly, we briefly introduce the definition, operational laws, some aggregation operators and the distance calculating method of 2TLNNs. Then, the calculation steps of the original TODIM model are presented in simplified form. Thereafter, we extend the original TODIM model to the 2TLNNs environment to build the 2TLNNs TODIM model, our proposed method, which is more reasonable and scientific in considering the subjectivity of DM’s behaviors and the dominance of each alternative over others. Finally, a numerical example for the safety assessment of a construction project is proposed to illustrate the new method, and some comparisons are also conducted to further illustrate the advantages of the new method.


Sign in / Sign up

Export Citation Format

Share Document