Fine‐grained semantic ethnic costume high‐resolution image colorization with conditional GAN

Author(s):  
Di Wu ◽  
Jianhou Gan ◽  
Juxiang Zhou ◽  
Jun Wang ◽  
Wei Gao
2021 ◽  
Author(s):  
Samir Zamarialai ◽  
Thijs Perenboom ◽  
Amanda Kruijver ◽  
Zenglin Shi ◽  
Bernard Foing

<p>Remote sensing (RS) imagery, generated by e.g. cameras on satellites, airplanes and drones, has been used for a variety of applications such as environmental monitoring, detection of craters, monitoring temporal changes on planetary surfaces.</p><p>In recent years, researchers started applying Computer Vision [TP1] methods on RS data. This led to a steady development of remote sensing classification, providing good results on classification and segmentation tasks on RS data.  However, there are still problems with current approaches. Firstly, the main focus is on high-resolution RS imagery. Apart from the fact that these data are not accessible to everyone, the models fail to generalize on lower resolution data. Secondly, the models fail to generalize on more fine-grained classes. For example, models tend to generalize very well on detecting buildings in general, however they fail to distinguish if a building belongs to a fine-grained subclass like residential or commercial buildings. Fine-grained classes often appear very similar to each other, therefore, models have problems to distinguish between them. This problem occurs both in high-resolution and low-resolution RS imagery, however the drop in accuracy is much more significant when using lower resolution data.</p><p>For these reasons, we propose a Multi-Task Convolutional Neural Network (CNN) with three objective functions for segmentation of RS imagery. This model should be able to generalize on different resolutions and receive better accuracy than state-of the-art approaches, especially on fine-grained classes.</p><p>The model consists of two main components. The first component is a CNN that transforms the input image to a segmentation map. This module is optimized with a pixel-wise Cross-Entropy loss function between the segmentation map of the model and the ground truth annotations. If the input image is of lower resolution, this segmentation map will miss out on the complete structure of input images. The second component is another CNN to build a high-resolution image from the low-resolution input image in order to reconstruct fine-grained structure information. This module essentially guides the model to learn more fine-grained feature representations. The transformed image from this module will have much more details like sharper edges and better color. The second CNN module is optimized with a Mean-Squared-Error loss function between the original high-resolution image and the transformed image. Finally, the two images created by the model are then evaluated by a third objective function that aims to learn the distance of similarity between the segmented input image and the super-high resolution segmentation. The final objective function consists of a sum of the three objectives mentioned above. After the model is finished with training, the second module should be detached, meaning high-resolution imagery is only needed during the training phase.</p><p>At the moment we are implementing the model. Afterwards, we will benchmark the model against current state of the art approaches. The status will be presented at EGU 2021.­</p>


Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Author(s):  
А.С. Алексеев ◽  
А.А. Никифоров ◽  
А.А. Михайлова ◽  
М.Р. Вагизов

В связи со старением информационных материалов о состоянии лесов существует потребность в разработке новых методов таксации древостоев, основанных на применении последних научно-технических достижений в области теории структуры и продуктивности древостоев, дистанционных методов изучения лесов, информационных и ГИС технологий. В статье приведены результаты разработки и проверки нового метода определения таксационных характеристик сомкнутых насаждений на основе правила 3/2 и подобных ему правил Хильми и Рейнеке, с одной стороны, и определения числа деревьев на единице площади по снимку сверх высокого разрешения, полученного с помощью БПЛА, с другой. С теоретической точки зрения эта зависимости величин запаса, средней высоты и среднего диаметра от числа стволов на единице площади относятся к классу аллометрических связей, очень часто встречающихся при количественном описании соотношений частей биологических систем разных уровней иерархии, от организмов до экосистем. Параметры аллометрических зависимостей запаса, средних высоты и диаметра от числа стволов на единице площади были определены для основных лесообразующих пород по данным таблиц хода роста нормальных (полных) древостоев с теоретическим показателем степени и затем использованы для расчетов. Число деревьев на единице площади определялось по снимку с разрешением 7,13 см/пиксель, полученному с помощью 4-роторной платформы. Обработка материалов аэрофотосъемки была выполнена в специализированной фотограмметрической системе Agisoft Photoscan. В результате были получены ортофотоплан и цифровая модель поверхности крон деревьев на изучаемую территорию с определением их высот. Для автоматизированной обработки полученных изображений с целью получения значений числа деревьев на единицу площади был создан специализированный скрипт на языке Java. Погрешности определения таксационных характеристик древостоев предлагаемым методом не выше установленных действующими нормативными материалами. Every time there is a demand for new innovative methods of forest resources estimation based on last achievements in theoretical science, remote sensing methods, information and GIS-technologies. In the paper are presented a new method and the results of its application to forest stands growing stock, mean height and diameter determination. The method is based on rule 3/2 and similar Reineke and Hilmy rules, on one hand and high resolution image made by unmanned aerial vehicle, which used for determination of number of trees per area unit, on other. The above rules are well known in quantitative biology as an allometric and widely used for description of different kind of relations in biological systems of various scale: from organisms to ecosystems. Parameters of above allometric relationships between growing stock, mean height and diameter and stems density per area unit was determine on the base of full stock growth and yield tables for main tree species and after used for experimental calculations. The number of trees per area unit was determined after special treatment of high resolution image made by unmanned flying machine. The growing stock, mean height and diameter determined by suggested method was compared with the data of regular forest inventory. Comparison gives positive result and method may be recommended for further development.


1989 ◽  
Vol 281 (5) ◽  
pp. 336-341 ◽  
Author(s):  
W. Stolz ◽  
K. Scharffetter ◽  
W. Abmayr ◽  
W. K�ditz ◽  
T. Krieg

Author(s):  
R. S. Hansen ◽  
D. W. Waldram ◽  
T. Q. Thai ◽  
R. B. Berke

Abstract Background High-resolution Digital Image Correlation (DIC) measurements have previously been produced by stitching of neighboring images, which often requires short working distances. Separately, the image processing community has developed super resolution (SR) imaging techniques, which improve resolution by combining multiple overlapping images. Objective This work investigates the novel pairing of super resolution with digital image correlation, as an alternative method to produce high-resolution full-field strain measurements. Methods First, an image reconstruction test is performed, comparing the ability of three previously published SR algorithms to replicate a high-resolution image. Second, an applied translation is compared against DIC measurement using both low- and super-resolution images. Third, a ring sample is mechanically deformed and DIC strain measurements from low- and super-resolution images are compared. Results SR measurements show improvements compared to low-resolution images, although they do not perfectly replicate the high-resolution image. SR-DIC demonstrates reduced error and improved confidence in measuring rigid body translation when compared to low resolution alternatives, and it also shows improvement in spatial resolution for strain measurements of ring deformation. Conclusions Super resolution imaging can be effectively paired with Digital Image Correlation, offering improved spatial resolution, reduced error, and increased measurement confidence.


Sign in / Sign up

Export Citation Format

Share Document