xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase.

1989 ◽  
Vol 8 (5) ◽  
pp. 1623-1627 ◽  
Author(s):  
C. J. Stirling ◽  
S. D. Colloms ◽  
J. F. Collins ◽  
G. Szatmari ◽  
D. J. Sherratt
Gene ◽  
1996 ◽  
Vol 180 (1-2) ◽  
pp. 225-227 ◽  
Author(s):  
Michael R. Snaith ◽  
Nigel J. Kilby ◽  
James A.H. Murray

2020 ◽  
Vol 11 ◽  
Author(s):  
Mohammed Radhi Mohaisen ◽  
Alan John McCarthy ◽  
Evelien M. Adriaenssens ◽  
Heather Elizabeth Allison

Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 405
Author(s):  
David L. Lin ◽  
German M. Traglia ◽  
Rachel Baker ◽  
David J. Sherratt ◽  
Maria Soledad Ramirez ◽  
...  

Modules composed of a resistance gene flanked by Xer site-specific recombination sites, the vast majority of which were found in Acinetobacter baumannii, are thought to behave as elements that facilitate horizontal dissemination. The A. baumannii xerC and xerD genes were cloned, and the recombinant clones used to complement the cognate Escherichia coli mutants. The complemented strains supported the resolution of plasmid dimers, and, as is the case with E. coli and Klebsiella pneumoniae plasmids, the activity was enhanced when the cells were grown in a low osmolarity growth medium. Binding experiments showed that the partially purified A. baumannii XerC and XerD proteins (XerCAb and XerDAb) bound synthetic Xer site-specific recombination sites, some of them with a nucleotide sequence deduced from existing A. baumannii plasmids. Incubation with suicide substrates resulted in the covalent attachment of DNA to a recombinase, probably XerCAb, indicating that the first step in the recombination reaction took place. The results described show that XerCAb and XerDAb are functional proteins and support the hypothesis that they participate in horizontal dissemination of resistant genes among bacteria.


2003 ◽  
Vol 185 (10) ◽  
pp. 3076-3080 ◽  
Author(s):  
Dominic Esposito ◽  
Gary F. Gerard

ABSTRACT The Escherichia coli nucleoid-associated protein Fis was previously shown to be involved in bacteriophage lambda site-specific recombination in vivo, enhancing the levels of both integrative recombination and excisive recombination. While purified Fis protein was shown to stimulate in vitro excision, Fis appeared to have no effect on in vitro integration reactions even though a 15-fold drop in lysogenization frequency had previously been observed in fis mutants. We demonstrate here that E. coli Fis protein does stimulate integrative lambda recombination in vitro but only under specific conditions which likely mimic natural in vivo recombination more closely than the standard conditions used in vitro. In the presence of suboptimal concentrations of Int protein, Fis stimulates the rate of integrative recombination significantly. In addition, Fis enhances the recombination of substrates with nonstandard topologies which may be more relevant to the process of in vivo phage lambda recombination. These data support the hypothesis that Fis may play an essential role in lambda recombination in the host cell.


Sign in / Sign up

Export Citation Format

Share Document