nucleoprotein complex
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 11)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Vol 75 (6) ◽  
pp. 484-488
Author(s):  
Beat Fierz

Epigenetics research focuses on the study of heritable gene regulatory mechanisms that do not involve changes of the DNA sequence. Such mechanisms include post-translational modifications of histone proteins that organize the genome in the nucleus into a nucleoprotein complex called chromatin, and which are of key importance in development and disease. Chemical biology tools as developed by my group, in particular synthetic peptide and protein chemistry, have been critical to elucidate epigenetic signaling mechanisms. As outlined below, they allow the reconstitution of chromatin carrying defined modifications and thus the elucidation of detailed molecular mechanisms.


2021 ◽  
Author(s):  
Adam S. B. Jalal ◽  
Ngat T. Tran ◽  
Ling J. Wu ◽  
Karunakaran Ramakrishnan ◽  
Martin Rejzek ◽  
...  

ABSTRACTATP and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report a nucleoid occlusion protein Noc as the first example of a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16-bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (i) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (ii) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.


2020 ◽  
Vol 117 (42) ◽  
pp. 26389-26397 ◽  
Author(s):  
Xiaoyang Li ◽  
Qinghua Yang ◽  
Ling Peng ◽  
Haitao Tu ◽  
Lan-Ying Lee ◽  
...  

Agrobacterium tumefaciensis the causal agent of crown gall disease. The bacterium is capable of transferring a segment of single-stranded DNA (ssDNA) into recipient cells during the transformation process, and it has been widely used as a genetic modification tool for plants and nonplant organisms. Transferred DNA (T-DNA) has been proposed to be escorted by two virulence proteins, VirD2 and VirE2, as a nucleoprotein complex (T-complex) that targets the host nucleus. However, it is not clear how such a proposed large DNA–protein complex is delivered through the host nuclear pore in a natural setting. Here, we studied the natural nuclear import of theAgrobacterium-delivered ssDNA-binding protein VirE2 inside plant cells by using a split-GFP approach with a newly constructed T-DNA–free strain. Our results demonstrate that VirE2 is targeted into the host nucleus in a VirD2- and T-DNA–dependent manner. In contrast with VirD2 that binds to plant importin α for nuclear import, VirE2 directly interacts with the host nuclear pore complex component nucleoporin CG1 to facilitate its nuclear uptake and the transformation process. Our data suggest a cooperative nuclear import model in which T-DNA is guided to the host nuclear pore by VirD2 and passes through the pore with the assistance of interactions between VirE2 and host nucleoporin CG1. We hypothesize that this large linear nucleoprotein complex (T-complex) is targeted to the nucleus by a “head” guide from the VirD2–importin interaction and into the nucleus by a lateral assistance from the VirE2–nucleoporin interaction.


2020 ◽  
Author(s):  
Debayan Purkait ◽  
Debolina Bandyopadhyay ◽  
Padmaja P. Mishra

AbstractIntegration Host Factor (IHF) is a heterodimeric site-specific nucleoid-associated protein (NAP) well known for its DNA bending ability. The binding is mediated through the narrow minor grooves of the consensus sequence, involving van der-Waals interaction and hydrogen bonding. Although the DNA bend state of IHF has been captured by both X-ray Crystallography and Atomic Force Microscopy (AFM), the range of flexibility and degree of heterogeneity in terms of quantitative analysis of the nucleoprotein complex has largely remained unexplored. Here we have monitored and compared the trajectories of the conformational dynamics of a dsDNA upon binding of wild-type (wt) and single-chain (sc) IHF at millisecond resolution through single-molecule FRET (smFRET). Our findings reveal that the nucleoprotein complex exists in a ‘Slacked-Dynamic’ state throughout the observation window where many of them have switched between multiple ‘Wobbling States’ in the course of attainment of packaged form. A range of DNA ‘Flexure Angles’ has been calculated that give us vital insights regarding the nucleoid organization and transcriptional regulation in prokaryotes. This study opens up an opportunity to improve the understanding of the functions of other nucleoid-associated proteins (NAPs) by complementing the previous detailed atomic-level structural analysis, which eventually will allow accessibility towards a better hypothesis.


Open Biology ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 200097 ◽  
Author(s):  
Adam S. B. Jalal ◽  
Tung B. K. Le

Proper chromosome segregation during cell division is essential in all domains of life. In the majority of bacterial species, faithful chromosome segregation is mediated by the tripartite ParABS system, consisting of an ATPase protein ParA, a CTPase and DNA-binding protein ParB, and a centromere-like parS site. The parS site is most often located near the origin of replication and is segregated first after chromosome replication. ParB nucleates on parS before binding to adjacent non-specific DNA to form a multimeric nucleoprotein complex. ParA interacts with ParB to drive the higher-order ParB–DNA complex, and hence the replicating chromosomes, to each daughter cell. Here, we review the various models for the formation of the ParABS complex and describe its role in segregating the origin-proximal region of the chromosome. Additionally, we discuss outstanding questions and challenges in understanding bacterial chromosome segregation.


2019 ◽  
Author(s):  
A.V. Shvetsov ◽  
D.V. Lebedev ◽  
Y.A. Zabrodskaya ◽  
A.A. Shaldzhyan ◽  
M.A. Egorova ◽  
...  

AbstractTwo influenza A nucleoprotein variants (wt: G102R; and mutant: G102R and E292G) were studied with regard to macro-molecular interactions in oligomeric form (24-mers). The E292G mutation has been previously shown to provide cold adaptation. Molecular dynamics simulations of these complexes and trajectory analysis showed that the most significant difference between the obtained models was distance differences between nucleoprotein complex strands. Influenza virus nucleoprotein complexes were isolated from strains bearing the corresponding NP amino acid substitutions. The isolated complexes were characterized by transmission electron microscopy and differential scanning fluorimetry (DSF). Presence of the E292G substitution was shown by DSF to affect nucleoprotein complex melting temperature. In the filament interface peptide model, it was shown that the peptide corresponding in primary structure to the wild-type NP (SGYDFEREGYS, wild type peptide) is prone to temperature-dependent self-association, unlike the peptide carrying the substitution corresponding to E292G (SGYDFGREGYS, mutant peptide). It was also shown that the SGYDFEREGYS peptide (wt) is capable of interacting with a recombinant full-size monomeric nucleoprotein (with primary structure corresponding to wild type); this interaction’s equilibrium dissociation constant is five orders of magnitude lower than for the SGYDFGREGYS peptide. Using small-angle neutron scattering (SANS), the supramolecular structures of isolated complexes of these proteins was studied at temperatures of 15, 32, and 37°C. SANS data show that the structures of the studied complexes (mutant or normal proteins with RNA) at elevated temperature differ from the rod-like particle model and react differently to temperature changes. The data suggest that the mechanism behind cold adaptation with E292G is associated with a weakening of the interaction between strands of the ribonucleoprotein complex and, as a result, the appearance of inter-chain interface flexibility necessary for complex function at low temperature.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Arnaud Vanden Broeck ◽  
Christophe Lotz ◽  
Julio Ortiz ◽  
Valérie Lamour

Abstract DNA gyrase is an essential enzyme involved in the homeostatic control of DNA supercoiling and the target of successful antibacterial compounds. Despite extensive studies, a detailed architecture of the full-length DNA gyrase from the model organism E. coli is still missing. Herein, we report the complete structure of the E. coli DNA gyrase nucleoprotein complex trapped by the antibiotic gepotidacin, using phase-plate single-particle cryo-electron microscopy. Our data unveil the structural and spatial organization of the functional domains, their connections and the position of the conserved GyrA-box motif. The deconvolution of two states of the DNA-binding/cleavage domain provides a better understanding of the allosteric movements of the enzyme complex. The local atomic resolution in the DNA-bound area reaching up to 3.0 Å enables the identification of the antibiotic density. Altogether, this study paves the way for the cryo-EM determination of gyrase complexes with antibiotics and opens perspectives for targeting conformational intermediates.


Sign in / Sign up

Export Citation Format

Share Document