scholarly journals Nuclear factor I acts as a transcription factor on the MMTV promoter but competes with steroid hormone receptors for DNA binding.

1990 ◽  
Vol 9 (7) ◽  
pp. 2233-2239 ◽  
Author(s):  
U. Brüggemeier ◽  
L. Rogge ◽  
E. L. Winnacker ◽  
M. Beato
FEBS Letters ◽  
1996 ◽  
Vol 390 (1) ◽  
pp. 44-46 ◽  
Author(s):  
Shigehiro Osada ◽  
Shoko Daimon ◽  
Tsutomu Nishihara ◽  
Masayoshi Imagawa

2001 ◽  
Vol 361 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Guy VERRIJDT ◽  
Annemie HAELENS ◽  
Erik SCHOENMAKERS ◽  
Wilfried ROMBAUTS ◽  
Frank CLAESSENS

We performed a comparative analysis of the effect of high-mobility group box protein 1 (HMGB1) on DNA binding by the DNA-binding domains (DBDs) of the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. The affinity of the DBDs of the different receptors for the tyrosine aminotransferase glucocorticoid response element, a classical high-affinity binding element, was augmented up to 7-fold by HMGB1. We found no major differences in the effects of HMGB1 on DNA binding between the different steroid hormone receptors. In transient transfection assays, however, HMGB1 significantly enhances the activity of the glucocorticoid and progesterone receptors but not the androgen or mineralocorticoid receptor. We also investigated the effect of HMGB1 on the binding of the androgen receptor DBD to a subclass of directly repeated response elements that is recognized exclusively by the androgen receptor and not by the glucocorticoid, progesterone or mineralocorticoid receptor. Surprisingly, a deletion of 26 amino acid residues from the C-terminal extension of the androgen receptor DBD does not influence DNA binding but destroys its sensitivity to HMGB1. Deletion of the corresponding fragment in the DBDs of the glucocorticoid, progesterone and mineralocorticoid receptor destroyed their DNA binding. This 26-residue fragment is therefore essential for the influence of HMGB1 on DNA recognition by all steroid hormone receptors that were tested. However, it is dispensable for DNA binding by the androgen receptor.


1985 ◽  
Vol 5 (5) ◽  
pp. 964-971
Author(s):  
R M Gronostajski ◽  
S Adhya ◽  
K Nagata ◽  
R A Guggenheimer ◽  
J Hurwitz

Nuclear factor I is a cellular site-specific DNA-binding protein required for the efficient in vitro replication of adenovirus DNA. We have characterized human DNA sequences to which nuclear factor I binds. Three nuclear factor I binding sites (FIB sites), isolated from HeLa cell DNA, each contain the sequence TGG(N)6-7GCCAA. Comparison with other known and putative FIB sites suggests that this sequence is important for the binding of nuclear factor I. Nuclear factor I protects a 25- to 30-base-pair region surrounding this sequence from digestion by DNase I. Methylation protection studies suggest that nuclear factor I interacts with guanine residues within the TGG(N)6-7GCCAA consensus sequence. One binding site (FIB-2) contained a restriction endonuclease HaeIII cleavage site (GGCC) at the 5' end of the GCCAA motif. Digestion of FIB-2 with HaeIII abolished the binding of nuclear factor I. Southern blot analyses indicate that the cellular FIB sites described here are present within single-copy DNA in the HeLa cell genome.


1992 ◽  
Vol 12 (4) ◽  
pp. 1846-1855 ◽  
Author(s):  
A Riccio ◽  
P V Pedone ◽  
L R Lund ◽  
T Olesen ◽  
H S Olsen ◽  
...  

Transforming growth factor beta (TGF-beta) is the name of a group of closely related polypeptides characterized by a multiplicity of effects, including regulation of extracellular proteolysis and turnover of the extracellular matrix. Its cellular mechanism of action is largely unknown. TGF-beta 1 is a strong and fast inducer of type 1 plasminogen activator inhibitor gene transcription. We have identified a TGF-beta 1-responsive element in the 5'-flanking region of the human type 1 plasminogen activator inhibitor gene and shown that it is functional both in its natural context and when fused to a heterologous nonresponsive promoter. Footprinting and gel retardation experiments showed that two different nuclear factors, present in extracts from both TGF-beta 1-treated and nontreated cells, bind to adjacent sequences contained in the responsive unit. A palindromic sequence binds a trans-acting factor(s) of the CCAAT-binding transcription factor-nuclear factor I family. A partially overlapping dyad symmetry interacts with a second protein that much evidence indicates to be USF. USF is a transactivator belonging to the basic helix-loop-helix family of transcription factors. Mutations which abolish the binding of either CCAAT-binding transcription factor-nuclear factor I or USF result in reduction of transcriptional activation upon exposure to TGF-beta 1, thus showing that both elements of the unit are necessary for the TGF-beta 1 response. We discuss the possible relationship of these findings to the complexity of the TGF-beta action.


Sign in / Sign up

Export Citation Format

Share Document