scholarly journals The hepatitis B virus X-gene product trans-activates both RNA polymerase II and III promoters.

1990 ◽  
Vol 9 (2) ◽  
pp. 497-504 ◽  
Author(s):  
B. Aufiero ◽  
R.J. Schneider
1998 ◽  
Vol 18 (12) ◽  
pp. 7546-7555 ◽  
Author(s):  
Dorjbal Dorjsuren ◽  
Yong Lin ◽  
Wenxiang Wei ◽  
Tatsuya Yamashita ◽  
Takahiro Nomura ◽  
...  

ABSTRACT To modulate transcription, regulatory factors communicate with basal transcription factors and/or RNA polymerases in a variety of ways. Previously, it has been reported that RNA polymerase II subunit 5 (RPB5) is one of the targets of hepatitis B virus X protein (HBx) and that both HBx and RPB5 specifically interact with general transcription factor IIB (TFIIB), implying that RPB5 is one of the communicating subunits of RNA polymerase II involved in transcriptional regulation. In this context, we screened for a host protein(s) that interacts with RPB5. By far-Western blot screening, we cloned a novel gene encoding a 508-amino-acid-residue RPB5-binding protein from a HepG2 cDNA library and designated it RPB5-mediating protein (RMP). Expression of RMP mRNA was detected ubiquitously in various tissues. Bacterially expressed recombinant RMP strongly bound RPB5 but neither HBx nor TATA-binding protein in vitro. Endogenous RMP was immunologically detected interacting with assembled RPB5 in RNA polymerase in mammalian cells. The central part of RMP is responsible for RPB5 binding, and the RMP-binding region covers both the TFIIB- and HBx-binding sites of RPB5. Overexpression of RMP, but not mutant RMP lacking the RPB5-binding region, inhibited HBx transactivation of reporters with different HBx-responsive cis elements in transiently transfected cells. The repression by RMP was counteracted by HBx in a dose-dependent manner. Furthermore, RMP has an inhibitory effect on transcriptional activation by VP16 in the absence of HBx. These results suggest that RMP negatively modulates RNA polymerase II function by binding to RPB5 and that HBx counteracts the negative role of RMP on transcription indirectly by interacting with RPB5.


1983 ◽  
Vol 3 (10) ◽  
pp. 1766-1773 ◽  
Author(s):  
L B Rall ◽  
D N Standring ◽  
O Laub ◽  
W J Rutter

We employed an in vitro cell-free transcription system to locate RNA polymerase II promoters on the hepatitis B virus genome. The strongest promoter precedes the surface antigen (HBsAg) gene, which is comprised of a long (500 base pairs) presurface region as well as the mature HBsAg coding sequence. The origin of this transcript was localized by using truncated templates and S1 endonuclease mapping. The activity of the promoter was confirmed in transfection experiments in which the complete HBsAg gene was introduced into monkey kidney cells via a simian virus 40 expression vector. A second RNA polymerase II promoter preceding the HBcAg gene was also active in the cell-free system. The presence of multiple promoters in the hepatitis B virus genome suggests that the relative levels of viral-specific proteins detected in liver and serum may reflect differential or regulated promoter efficiency.


1998 ◽  
Vol 29 (6) ◽  
pp. 872-878 ◽  
Author(s):  
Shin-Lian Doong ◽  
Mei-Hui Lin ◽  
Ming-Ming Tsai ◽  
Tz-Rung Li ◽  
Shuang-En Chuang ◽  
...  

1983 ◽  
Vol 3 (10) ◽  
pp. 1766-1773
Author(s):  
L B Rall ◽  
D N Standring ◽  
O Laub ◽  
W J Rutter

We employed an in vitro cell-free transcription system to locate RNA polymerase II promoters on the hepatitis B virus genome. The strongest promoter precedes the surface antigen (HBsAg) gene, which is comprised of a long (500 base pairs) presurface region as well as the mature HBsAg coding sequence. The origin of this transcript was localized by using truncated templates and S1 endonuclease mapping. The activity of the promoter was confirmed in transfection experiments in which the complete HBsAg gene was introduced into monkey kidney cells via a simian virus 40 expression vector. A second RNA polymerase II promoter preceding the HBcAg gene was also active in the cell-free system. The presence of multiple promoters in the hepatitis B virus genome suggests that the relative levels of viral-specific proteins detected in liver and serum may reflect differential or regulated promoter efficiency.


Author(s):  
Tetsuhiko Arima ◽  
Kazuhiko Nakao ◽  
Keisuke Nakata ◽  
Hiroki Ishikawa ◽  
Tatsuki Ichikawa ◽  
...  

1994 ◽  
Vol 21 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Clara Balsano ◽  
Olivier Billet ◽  
Myriam Bennoun ◽  
Catherine Cavard ◽  
Alain Zider ◽  
...  

1997 ◽  
Vol 272 (11) ◽  
pp. 7132-7139 ◽  
Author(s):  
Yong Lin ◽  
Takahiro Nomura ◽  
JaeHun Cheong ◽  
Dorjbal Dorjsuren ◽  
Katsuhira Iida ◽  
...  

1995 ◽  
Vol 270 (52) ◽  
pp. 31405-31412 ◽  
Author(s):  
Hyunsook Lee ◽  
Young-Ho Lee ◽  
Yun-Sil Huh ◽  
Hongmo Moon ◽  
Yungdae Yun

1999 ◽  
Vol 73 (12) ◽  
pp. 10399-10405 ◽  
Author(s):  
Kurt Reifenberg ◽  
Heike Wilts ◽  
Jürgen Löhler ◽  
Petra Nusser ◽  
Ralph Hanano ◽  
...  

ABSTRACT The function of the X protein in the life cycle of mammalian hepadnaviruses is unclear. Based on tissue culture experiments it has been suggested that this protein represents a transcriptional transactivator which might be essential for the expression of the viral core gene. Here we have examined whether the activity of the human hepatitis B virus (HBV) core gene in vivo depends on X coexpression. To this end we compared core gene expression between four lineages of transgenic mice carrying the HBV core gene in cisarrangement with the X gene (cex lineage) and six lineages containing a modified construct in which the start codon of the X gene had been deleted (ce lineage). Whereas all cex lineages consistently exhibited a high-level hepatic core gene expression, the liver-specific core gene expression pattern of the ce lineages was heterogenous with four lineages virtually not expressing the core gene. This defect was due to a strongly reduced transcription since no core mRNA could be detected by Northern blotting. To test whether core gene expression could be restored by providing an intact X gene in trans, we crossbred mice of two lines which expressed no core mRNA or core protein with transgenic mice expressing the X-gene product under the transcriptional regulation of the liver-specific major-urinary-protein promoter/enhancer (MUP-X mice). The introduction of the MUP-X transgene induced core mRNA expression and core protein biosynthesis in the livers of the double-transgenic mice. This demonstrates that the X-gene product has the capacity to transactivate HBV core gene expression in vivo.


Sign in / Sign up

Export Citation Format

Share Document