scholarly journals RMP, a Novel RNA Polymerase II Subunit 5-Interacting Protein, Counteracts Transactivation by Hepatitis B Virus X Protein

1998 ◽  
Vol 18 (12) ◽  
pp. 7546-7555 ◽  
Author(s):  
Dorjbal Dorjsuren ◽  
Yong Lin ◽  
Wenxiang Wei ◽  
Tatsuya Yamashita ◽  
Takahiro Nomura ◽  
...  

ABSTRACT To modulate transcription, regulatory factors communicate with basal transcription factors and/or RNA polymerases in a variety of ways. Previously, it has been reported that RNA polymerase II subunit 5 (RPB5) is one of the targets of hepatitis B virus X protein (HBx) and that both HBx and RPB5 specifically interact with general transcription factor IIB (TFIIB), implying that RPB5 is one of the communicating subunits of RNA polymerase II involved in transcriptional regulation. In this context, we screened for a host protein(s) that interacts with RPB5. By far-Western blot screening, we cloned a novel gene encoding a 508-amino-acid-residue RPB5-binding protein from a HepG2 cDNA library and designated it RPB5-mediating protein (RMP). Expression of RMP mRNA was detected ubiquitously in various tissues. Bacterially expressed recombinant RMP strongly bound RPB5 but neither HBx nor TATA-binding protein in vitro. Endogenous RMP was immunologically detected interacting with assembled RPB5 in RNA polymerase in mammalian cells. The central part of RMP is responsible for RPB5 binding, and the RMP-binding region covers both the TFIIB- and HBx-binding sites of RPB5. Overexpression of RMP, but not mutant RMP lacking the RPB5-binding region, inhibited HBx transactivation of reporters with different HBx-responsive cis elements in transiently transfected cells. The repression by RMP was counteracted by HBx in a dose-dependent manner. Furthermore, RMP has an inhibitory effect on transcriptional activation by VP16 in the absence of HBx. These results suggest that RMP negatively modulates RNA polymerase II function by binding to RPB5 and that HBx counteracts the negative role of RMP on transcription indirectly by interacting with RPB5.

1997 ◽  
Vol 272 (11) ◽  
pp. 7132-7139 ◽  
Author(s):  
Yong Lin ◽  
Takahiro Nomura ◽  
JaeHun Cheong ◽  
Dorjbal Dorjsuren ◽  
Katsuhira Iida ◽  
...  

1983 ◽  
Vol 3 (10) ◽  
pp. 1766-1773 ◽  
Author(s):  
L B Rall ◽  
D N Standring ◽  
O Laub ◽  
W J Rutter

We employed an in vitro cell-free transcription system to locate RNA polymerase II promoters on the hepatitis B virus genome. The strongest promoter precedes the surface antigen (HBsAg) gene, which is comprised of a long (500 base pairs) presurface region as well as the mature HBsAg coding sequence. The origin of this transcript was localized by using truncated templates and S1 endonuclease mapping. The activity of the promoter was confirmed in transfection experiments in which the complete HBsAg gene was introduced into monkey kidney cells via a simian virus 40 expression vector. A second RNA polymerase II promoter preceding the HBcAg gene was also active in the cell-free system. The presence of multiple promoters in the hepatitis B virus genome suggests that the relative levels of viral-specific proteins detected in liver and serum may reflect differential or regulated promoter efficiency.


2006 ◽  
Vol 81 (4) ◽  
pp. 1714-1726 ◽  
Author(s):  
Sujeong Kim ◽  
Hye-Young Kim ◽  
Seungmin Lee ◽  
Sung Woo Kim ◽  
Seonghyang Sohn ◽  
...  

ABSTRACT The hepatitis B virus (HBV) X protein (HBx) is thought to play a key role in HBV replication and the development of liver cancer. It became apparent that HBx induces mitochondrial clustering at the nuclear periphery, but the molecular basis for mitochondrial clustering is not understood. Since mitochondria move along the cytoskeleton as a cargo of motor proteins, we hypothesized that mitochondrial clustering induced by HBx occurs by an altered intracellular motility. Here, we demonstrated that the treatment of HBx-expressing cells with a microtubule-disrupting drug (nocodazole) abrogated mitochondrial clustering, while the removal of nocodazole restored clustering within 30 to 60 min, indicating that mitochondrial transport is occurring in a microtubule-dependent manner. The addition of a cytochalasin D-disrupting actin filament, however, did not measurably affect mitochondrial clustering. Mitochondrial clustering was further studied by observations of HBV-related hepatoma cells and HBV-replicating cells. Importantly, the abrogation of the dynein activity in HBx-expressing cells by microinjection of a neutralizing anti-dynein intermediate-chain antibody, dynamitin overexpression, or the addition of a dynein ATPase inhibitor significantly suppressed the mitochondrial clustering. In addition, HBx induced the activation of the p38 mitogen-activated protein kinase (MAPK) and inhibition of the p38 kinase activity by SB203580-attenuated HBx-induced mitochondrial clustering. Taken together, HBx activation of the p38 MAPK contributed to the increase in the microtubule-dependent dynein activity. The data suggest that HBx plays a novel regulatory role in subcellular transport systems, perhaps facilitating the process of maturation and/or assembly of progeny particles during HBV replication. Furthermore, mitochondrion aggregation induced by HBx may represent a cellular process that underlies disease progression during chronic viral infection.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Wan ◽  
Zhao Lei ◽  
Biao Tu ◽  
Tianyin Wang ◽  
Jiale Wang ◽  
...  

Neural precursor cell expressed developmentally downregulated gene 4 (NEDD4) plays two opposite roles in carcinogenesis. It has been reported that NEDD4 inhibits hepatocellular carcinoma (HCC) progression; however, little is known about its potential function and molecular mechanism in HCC in the context of hepatitis B virus (HBV) infection. In this study, we analyzed NEDD4 expression in 199 HCC specimens with or without HBV infection and observed that NEDD4 expression was unrelated to HBV exposure in HCC tumor tissue but that high NEDD4 expression conferred better overall survival (OS) and progression-free survival (PFS) than low NEDD4 expression in patients with HBV-associated HCC. Upregulation of NEDD4 inhibited proliferation, migration and invasion in HBV-related HCC cell lines. We demonstrated that NEDD4 interacts with HBV X protein (HBx) and that HBx upregulation could reverse the suppression of proliferation and mobility induced by NEDD4 overexpression. Furthermore, we confirmed that NEDD4 induced the degradation of HBx in a ubiquitin/proteasome-dependent manner via K48-linked ubiquitination. Our findings suggest that NEDD4 exerts a tumor-suppressive effect in HBV-associated HCC by acting as an E3 ubiquitin ligase for HBx degradation and provide new insights into the function of NEDD4.


1983 ◽  
Vol 3 (10) ◽  
pp. 1766-1773
Author(s):  
L B Rall ◽  
D N Standring ◽  
O Laub ◽  
W J Rutter

We employed an in vitro cell-free transcription system to locate RNA polymerase II promoters on the hepatitis B virus genome. The strongest promoter precedes the surface antigen (HBsAg) gene, which is comprised of a long (500 base pairs) presurface region as well as the mature HBsAg coding sequence. The origin of this transcript was localized by using truncated templates and S1 endonuclease mapping. The activity of the promoter was confirmed in transfection experiments in which the complete HBsAg gene was introduced into monkey kidney cells via a simian virus 40 expression vector. A second RNA polymerase II promoter preceding the HBcAg gene was also active in the cell-free system. The presence of multiple promoters in the hepatitis B virus genome suggests that the relative levels of viral-specific proteins detected in liver and serum may reflect differential or regulated promoter efficiency.


2020 ◽  
Vol 295 (9) ◽  
pp. 2888-2888
Author(s):  
Delphine Cougot ◽  
Yuanfei Wu ◽  
Stefano Cairo ◽  
Julie Caramel ◽  
Claire-Angélique Renard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document