scholarly journals The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T-antigen.

1991 ◽  
Vol 10 (3) ◽  
pp. 633-639 ◽  
Author(s):  
H. P. Rihs ◽  
D. A. Jans ◽  
H. Fan ◽  
R. Peters
Gene ◽  
2004 ◽  
Vol 337 ◽  
pp. 71-77 ◽  
Author(s):  
Amilcar Arenal ◽  
Rafael Pimentel ◽  
Carmen Garcı́a ◽  
Eulogio Pimentel ◽  
Peter Aleström

1996 ◽  
Vol 74 (3) ◽  
pp. 363-372 ◽  
Author(s):  
Werner Barth ◽  
Ursula Stochaj

Facilitated transport of proteins into the nucleus requires nuclear localization sequences (NLSs) be present in the protein destined for the nucleus. The specific binding of NLSs by components of the nuclear transport apparatus is essential for these targeting reactions. We now report that the yeast nucleoporin Nsp1 binds specifically nuclear localization sequences in vitro. This nucleoporin recognizes several NLSs that are functional for nuclear targeting in vivo, including the NLS of SV40 T-antigen and of the yeast transcription factor Gal4. Nsp1 is organized into three domains, and we have located NLS binding sites to the N-terminal portion and the middle repetitive region of the protein. For the interaction between the NLS of SV40 T-antigen and Nsp1, we obtained association constants of 1.2 × 107 M−1 and 5 × 107 M−1. An association constant of 5 × 107 M−1 was determined for NLS binding to the repetitive domain of Nsp1. We analyzed binding of Nsp1 and its domains to a mutant version of the NLS derived from SV40 T-antigen, which poorly functions for nuclear targeting in vivo. The affinity for the mutant signal was about two orders of magnitude lower than for the wild-type NLS.Key words: Nsp1, nuclear pore complex, nucleoporin, nuclear localization sequence, protein targeting, yeast.


1991 ◽  
Vol 280 (1) ◽  
pp. 111-116 ◽  
Author(s):  
S Grenfell ◽  
N Smithers ◽  
S Witham ◽  
A Shaw ◽  
P Graber ◽  
...  

Previous studies have shown that, after receptor-mediated endocytosis, interleukin-1 alpha (IL1 alpha) and interleukin-1 beta (IL1 beta) are translocated to the nucleus, where they appear to accumulate. It has been suggested that nuclear translocation may be involved in the biological responsiveness of target cells to IL1 stimulation. The human IL1 beta molecule contains a seven-amino-acid sequence (-Pro208-Lys-Lys-Lys-Met-Glu-Lys-) that shows some sequence identity with the nuclear localization sequence of the simian-virus-40 large T-antigen. The effects of point mutations within this putative nuclear localization sequence on IL1 beta binding, receptor-mediated endocytosis and biological activity have been characterized. Mutants M49 (Lys210→Ala), M50 (Lys211→Ala) and M51 (Pro208→Ala) all retained the ability to bind to the IL1 receptor, albeit with lower affinity than the wild-type molecules. However, mutants M49, M50 and M51 showed greater biological potency than wild-type IL1 alpha or IL1 beta, as measured by the induction of IL2 secretion. However, receptor-mediated endocytosis and nuclear accumulation of M50 were comparable with those in the wild-type. These observations suggest that the putative nuclear localization sequence may play an important role in the generation of biological responses to IL1 stimulation, even though it may not influence internalization of the ligand.


2010 ◽  
Vol 36 (5) ◽  
pp. 581-588 ◽  
Author(s):  
S. V. Burov ◽  
T. V. Yablokova ◽  
M. Yu. Dorosh ◽  
E. V. Krivizyuk ◽  
A. M. Efremov ◽  
...  

2002 ◽  
Vol 13 (12) ◽  
pp. 4388-4400 ◽  
Author(s):  
Jonathan D. Moore ◽  
Sally Kornbluth ◽  
Tim Hunt

Cyclin-dependent kinase (Cdk)2/cyclin E is imported into nuclei assembled in Xenopus egg extracts by a pathway that requires importin-α and -β. Here, we identify a basic nuclear localization sequence (NLS) in the N-terminus ofXenopus cyclin E. Mutation of the NLS eliminated nuclear accumulation of both cyclin E and Cdk2, and such versions of cyclin E were unable to trigger DNA replication. Addition of a heterologous NLS from SV40 large T antigen restored both nuclear targeting of Cdk2/cyclin E and DNA replication. We present evidence indicating that Cdk2/cyclin E complexes must become highly concentrated within nuclei to support replication and find that cyclin A can trigger replication at much lower intranuclear concentrations. We confirmed that depletion of endogenous cyclin E increases the concentration of cyclin B necessary to promote entry into mitosis. In contrast to its inability to promote DNA replication, cyclin E lacking its NLS was able to cooperate with cyclin B in promoting mitotic entry.


2020 ◽  
Vol 21 (19) ◽  
pp. 7428
Author(s):  
José L. Neira ◽  
Bruno Rizzuti ◽  
Ana Jiménez-Alesanco ◽  
Olga Abián ◽  
Adrián Velázquez-Campoy ◽  
...  

Numerous carrier proteins intervene in protein transport from the cytoplasm to the nucleus in eukaryotic cells. One of those is importin α, with several human isoforms; among them, importin α3 (Impα3) features a particularly high flexibility. The protein NUPR1L is an intrinsically disordered protein (IDP), evolved as a paralogue of nuclear protein 1 (NUPR1), which is involved in chromatin remodeling and DNA repair. It is predicted that NUPR1L has a nuclear localization sequence (NLS) from residues Arg51 to Gln74, in order to allow for nuclear translocation. We studied in this work the ability of intact NUPR1L to bind Impα3 and its depleted species, ∆Impα3, without the importin binding domain (IBB), using fluorescence, isothermal titration calorimetry (ITC), circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular docking techniques. Furthermore, the binding of the peptide matching the isolated NLS region of NUPR1L (NLS-NUPR1L) was also studied using the same methods. Our results show that NUPR1L was bound to Imp α3 with a low micromolar affinity (~5 μM). Furthermore, a similar affinity value was observed for the binding of NLS-NUPR1L. These findings indicate that the NLS region, which was unfolded in isolation in solution, was essentially responsible for the binding of NUPR1L to both importin species. This result was also confirmed by our in silico modeling. The binding reaction of NLS-NUPR1L to ∆Impα3 showed a larger affinity (i.e., lower dissociation constant) compared with that of Impα3, confirming that the IBB could act as an auto-inhibition region of Impα3. Taken together, our findings pinpoint the theoretical predictions of the NLS region in NUPR1L and, more importantly, suggest that this IDP relies on an importin for its nuclear translocation.


Sign in / Sign up

Export Citation Format

Share Document