GPS Navigation: Combining Pseudorange with Continuous Carrier Phase Using a Kalman Filter

Navigation ◽  
1990 ◽  
Vol 37 (2) ◽  
pp. 181-296 ◽  
Author(s):  
PATRICK Y. C. HWANG ◽  
R. GROVER BROWN
2019 ◽  
Vol 11 (14) ◽  
pp. 1679 ◽  
Author(s):  
Jianghui Geng ◽  
Enming Jiang ◽  
Guangcai Li ◽  
Shaoming Xin ◽  
Na Wei

In May 2016, the availability of GNSS raw measurements on smart devices was announced by Google with the release of Android 7. It means that developers can access carrier-phase and pseudorange measurements and decode navigation messages for the first time from mass-market Android-devices. In this paper, an improved Hatch filter algorithm, i.e., Three-Thresholds and Single-Difference Hatch filter (TT-SD Hatch filter), is proposed for sub-meter single point positioning with raw GNSS measurements on Android devices without any augmentation correction input, where the carrier-phase smoothed pseudorange window width adaptively varies according to the three-threshold detection for ionospheric cumulative errors, cycle slips and outliers. In the mean time, it can also eliminate the inconsistency of receiver clock bias between pseudorange and carrier-phase by inter-satellite difference. To eliminate the effects of frequent smoothing window resets, we combine TT-SD Hatch filter and Kalman filter for both time update and measurement update. The feasibility of the improved TT-SD Hatch filter method is then verified using static and kinematic experiments with a Nexus 9 Android tablet. The result of the static experiment demonstrates that the position RMS of TT-SD Hatch filter is about 0.6 and 0.8 m in the horizontal and vertical components, respectively. It is about 2 and 1.6 m less than the GNSS chipset solutions, and about 10 and 10 m less than the classical Hatch filter solution, respectively. Moreover, the TT-SD Hatch filter can accurately detect the cycle slips and outliers, and reset the smoothed window in time. It thus avoids the smoothing failure of Hatch filter when a large cycle-slip or an outlier occurs in the observations. Meanwhile, with the aid of the Kalman filter, TT-SD Hatch filter can keep continuously positioning at the sub-meter level. The result of the kinematic experiment demonstrates that the TT-SD Hatch filter solution can converge after a few minutes, and the 2D error is about 0.9 m, which is about 64%, 89%, and 92% smaller than that of the chipset solution, the traditional Hatch filter solution and standard single point solution, respectively. Finally, the TT-SD Hatch filter solution can recover a continuous driving track in this kinematic test.


Author(s):  
Xiao-dong Su ◽  
Yu-ru Zhang ◽  
Hai-tao Jiang ◽  
Ming Zhao ◽  
Jun-ling Li

2012 ◽  
Vol 490-495 ◽  
pp. 1631-1635
Author(s):  
Bei Zhang

This paper focuses on the study of digital IF signal simulator's Matlab implementation on the basis of GPS system and GPS navigation signal simulator.It includes the simulator's parameter settings (such as the sampling rate,intermediate frequency), then calculates the sampling signal's code phase and carrier phase by determining the signal's propagation delay. In addition,it introduces and simulates the ionospheric model and the tropospheric model,and corrects the sampling signal's code phase and carrier phase.This paper realizes GPS digital IF signal simulator's Matlab simulation,thus it provides the supporting platform for research,development and testing of the GPS receiver's new algorithm


Sign in / Sign up

Export Citation Format

Share Document