scholarly journals Old Mice Have Less Transcriptional Activation But Similar Periosteal Cell Proliferation Compared to Young‐Adult Mice in Response to in vivo Mechanical Loading

2020 ◽  
Vol 35 (9) ◽  
pp. 1751-1764 ◽  
Author(s):  
Christopher J Chermside‐Scabbo ◽  
Taylor L Harris ◽  
Michael D Brodt ◽  
Ingrid Braenne ◽  
Bo Zhang ◽  
...  
2019 ◽  
Vol 20 (3) ◽  
pp. 589 ◽  
Author(s):  
Maria Olmedillas del Moral ◽  
Nithi Asavapanumas ◽  
Néstor Uzcátegui ◽  
Olga Garaschuk

Brain aging is characterized by a chronic, low-grade inflammatory state, promoting deficits in cognition and the development of age-related neurodegenerative diseases. Malfunction of microglia, the brain-resident immune cells, was suggested to play a critical role in neuroinflammation, but the mechanisms underlying this malfunctional phenotype remain unclear. Specifically, the age-related changes in microglial Ca2+ signaling, known to be linked to its executive functions, are not well understood. Here, using in vivo two-photon imaging, we characterize intracellular Ca2+ signaling and process extension of cortical microglia in young adult (2–4-month-old), middle-aged (9–11-month-old), and old (18–21-month-old) mice. Our data revealed a complex and nonlinear dependency of the properties of intracellular Ca2+ signals on an animal’s age. While the fraction of cells displaying spontaneous Ca2+ transients progressively increased with age, the frequencies and durations of the spontaneous Ca2+ transients followed a bell-shaped relationship, with the most frequent and largest Ca2+ transients seen in middle-aged mice. Moreover, in old mice microglial processes extending toward an ATP source moved faster but in a more disorganized manner, compared to young adult mice. Altogether, these findings identify two distinct phenotypes of aging microglia: a reactive phenotype, abundantly present in middle-aged animals, and a dysfunctional/senescent phenotype ubiquitous in old mice.


Sign in / Sign up

Export Citation Format

Share Document