E2F4 expression is required for cell cycle progression of normal intestinal crypt cells and colorectal cancer cells

2009 ◽  
Vol 221 (2) ◽  
pp. 350-358 ◽  
Author(s):  
Hugo Garneau ◽  
Marie-Christine Paquin ◽  
Julie C. Carrier ◽  
Nathalie Rivard
PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e106571 ◽  
Author(s):  
Bruno Christian Koehler ◽  
Anna-Lena Scherr ◽  
Stephan Lorenz ◽  
Christin Elssner ◽  
Nicole Kautz ◽  
...  

2018 ◽  
Vol 109 (8) ◽  
pp. 2458-2468 ◽  
Author(s):  
Keiichiro Sakuma ◽  
Eiichi Sasaki ◽  
Kenya Kimura ◽  
Koji Komori ◽  
Yasuhiro Shimizu ◽  
...  

2019 ◽  
Author(s):  
Jie Sun ◽  
Di Wang ◽  
Yu Zhang ◽  
Qing Mu ◽  
Mei Li ◽  
...  

Abstract Background Compound Kushen Injection (CKI) has been clinically used in China for 15 years to treat various types of solid tumors, including colorectal cancer. Here we examine cell cycle arrest, induced autophagy, and mutant p53 pathways perturbed by CKI in colorectal cancer cells. We and other groups have shown that CKI alters p53 gene expression patterns and suppresses proliferation in colorectal cancer cells. Methods We measured the effect of CKI on cell proliferation, cell cycle progression and autophagy in sw480 and sw620 colorectal cancer cells in vitro, and carcinogenesis and the progression of azoxymethane/dextran sodium sulfate-induced colorectal cancer in ICR mice in vivo. We also used RNA sequencing to analyze mRNA expression altered by CKI, and further validated the expression of mutant p53 and several genes in the cell cycle pathway using reverse transcriptase-quantitative PCR and western blotting. Using network pharmacology (BATMAN-TCM database), we have also predicted the active ingredients in CKI involved in regulating the expression of mutant p53. Results We show evidence that CKI significantly suppressed proliferation and cell cycle progression, and induced autophagy of sw480 and sw620 cells in vitro; it also inhibited the development of inflammatory colorectal cancer in vivo. We also show that the down-regulated expression of mutant p53 and adjustments in several key genes related closely to cell-cycle progression. Furthermore, N-oxysophocarpine, lupenone, and geranylacetone were predicted to be the active ingredients of CKI involved in the down-regulated expression of mutant p53. Conclusion Our results indicate that CKI likely acts as a potential anti-cancer therapeutic agent that targets the cell cycle pathway, suggesting a key role in the development of a novel subsidiary therapeutic approach against mutant p53 in patients with colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document