Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media

2011 ◽  
Vol 86 (11) ◽  
pp. 1439-1448 ◽  
Author(s):  
Dimitris Sarris ◽  
Maria Galiotou-Panayotou ◽  
Apostolis A. Koutinas ◽  
Michael Komaitis ◽  
Seraphim Papanikolaou
2016 ◽  
Vol 33 ◽  
pp. S116-S117
Author(s):  
Seda Karasu-Yalcin ◽  
Kubra Eryasar ◽  
Buse Guler ◽  
Meryem Özdemir ◽  
Serife Baggul

2008 ◽  
Vol 99 (7) ◽  
pp. 2419-2428 ◽  
Author(s):  
Seraphim Papanikolaou ◽  
Maria Galiotou-Panayotou ◽  
Stylianos Fakas ◽  
Michael Komaitis ◽  
George Aggelis

2019 ◽  
Vol 290 ◽  
pp. 10-15 ◽  
Author(s):  
Shuyan Zhang ◽  
Sujit Sadashiv Jagtap ◽  
Anshu Deewan ◽  
Christopher V. Rao

2006 ◽  
Vol 52 (2) ◽  
pp. 134-142 ◽  
Author(s):  
Seraphim Papanikolaou ◽  
Maria Galiotou-Panayotou ◽  
Isabelle Chevalot ◽  
Michael Komaitis ◽  
Ivan Marc ◽  
...  

2020 ◽  
Vol 142 ◽  
pp. 105764 ◽  
Author(s):  
Sara Magdouli ◽  
Tayssir Guedri ◽  
Tarek Rouissi ◽  
Satinder Kaur Brar ◽  
Jean-Francois Blais

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3649 ◽  
Author(s):  
Markella Tzirita ◽  
Maria Kremmyda ◽  
Dimitris Sarris ◽  
Apostolis A. Koutinas ◽  
Seraphim Papanikolaou

One of the major environmental problems is the highly toxic agro-industrial waste called olive mill wastewater (OMW), deriving from olive oil production. On the other hand, the continuous development of the biological liquid fuel industry (biodiesel and bioethanol) makes it mandatory the process and exploitation of their main by-products, crude glycerol. This study dealt with the biotechnological conversions of biodiesel-derived crude glycerol with the use of the non-conventional yeast Yarrowia lipolytica in media that had been diluted with OMWs. OMWs, employed as simultaneous liquid medium and substrate, is a new trend recently appearing in Industrial Biotechnology, where value-added metabolites could be produced with simultaneous partial detoxification (i.e. decolorization and phenol removal) of the used residue. In the present study, diluted OMWs (containing 2.0 g/L of total phenolic compounds) blended with 70.0 g/L crude glycerol were employed as substrates. Production of value-added compounds by Y. lipolytica strain ACA-YC 5031 was studied in nitrogen-limited media favoring the production of secondary metabolites (i.e. citric acid, polyols, microbial lipids, polysaccharides). Batch-flask cultures were carried out and the impact of the addition of different NaCl concentrations (1.0%, 3.0%, 5.0% w/w) added upon the biochemical behavior of the strain was studied. Remarkable biomass production was observed in all trials, while in the “blank” experiment (no OMWs and no salt added), the metabolism was shifted toward the synthesis of polyols (Σpolyols = mannitol + arabitol + erythritol > 20 g/L and maximum total citric acid-Cit (sum of citric and isocitric acid) = 10.5 g/L). Addition of OMWs resulted in Citmax = 32.7 g/L, while Σpolyols concentration dropped to <15 g/L. Addition of salt in the OMW-based media slightly reduced the produced biomass, while Cit production drastically increased, reaching a final value of 54.0 g/L (conversion yield of Cit produced per unit of glycerol consumed = 0.82 g/g) in the trial with addition of 5.0% NaCl. Finally, significant color and phenols removal were observed, evaluating the yeast as a decontamination medium for the OMW and a great candidate for the production of value-added compounds.


2017 ◽  
Vol 17 (6) ◽  
pp. 695-709 ◽  
Author(s):  
Dimitris Sarris ◽  
Nikolaos G. Stoforos ◽  
Athanasios Mallouchos ◽  
Ioannis K. Kookos ◽  
Apostolis A. Koutinas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document