Early carbonic anhydrase induction in the gills of the blue crab,Callinectes sapidus, during low salinity acclimation is independent of ornithine decarboxylase activity

2001 ◽  
Vol 289 (6) ◽  
pp. 350-358 ◽  
Author(s):  
Raymond P. Henry ◽  
Stephen A. Watts
1982 ◽  
Vol 101 (1) ◽  
pp. 255-264 ◽  
Author(s):  
RAYMOND P. HENRY ◽  
JAMES N. CAMERON

When transferred from 865 to 250 m-osmol salinity, the blue crab C. sapidus maintains its blood Na+ and Cl− concentrations significantly above those in the medium. When branchial carbonic anhydrase is inhibited by acetazolamide, ion regulation fails and the animals do not survive the transfer. An alkalosis occurs in the blood at low salinity, indicated by an increase in HCO3− and pH at constant PCO2. The alkalosis is closely correlated with an increase in the Na+-Cl− difference, a convenient indicator of the overall strong ion difference. The contribution of changes in PCO2 to acid-base changes was negligible, but the change in the total weak acid (proteins) may be important. It is suggested that the change in blood acidbase status with salinity is related to an increase in the strong ion difference, which changes during the transition from osmoconformity to osmoregulation in the blue crab, and which is related to both carbonic anhydrase and ionactivated ATPases. Note:


1978 ◽  
Vol 39 (02) ◽  
pp. 496-503 ◽  
Author(s):  
P A D’Amore ◽  
H B Hechtman ◽  
D Shepro

SummaryOrnithine decarboxylase (ODC) activity, the rate-limiting step in the synthesis of polyamines, can be demonstrated in cultured, bovine, aortic endothelial cells (EC). Serum, serotonin and thrombin produce a rise in ODC activity. The serotonin-induced ODC activity is significantly blocked by imipramine (10-5 M) or Lilly 11 0140 (10-6M). Preincubation of EC with these blockers together almost completely depresses the 5-HT-stimulated ODC activity. These observations suggest a manner by which platelets may maintain EC structural and metabolic soundness.


2007 ◽  
Vol 53 (1) ◽  
pp. 1-9 ◽  
Author(s):  
YUTAKA HOSHINO ◽  
SHINYA TERASHIMA ◽  
YASUSHI TERANISHI ◽  
MASANORI TERASHIMA ◽  
MICHIHIKO KOGURE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document