Conflict‐free chromatic number versus conflict‐free chromatic index

2021 ◽  
Author(s):  
Michał Dębski ◽  
Jakub Przybyło
1986 ◽  
Vol 100 (2) ◽  
pp. 303-317 ◽  
Author(s):  
A. G. Chetwynd ◽  
A. J. W. Hilton

The graphs we consider here are either simple graphs, that is they have no loops or multiple edges, or are multigraphs, that is they may have more than one edge joining a pair of vertices, but again have no loops. In particular we shall consider a special kind of multigraph, called a star-multigraph: this is a multigraph which contains a vertex v*, called the star-centre, which is incident with each non-simple edge. An edge-colouring of a multigraph G is a map ø: E(G)→, where is a set of colours and E(G) is the set of edges of G, such that no two edges receiving the same colour have a vertex in common. The chromatic index, or edge-chromatic numberχ′(G) of G is the least value of || for which an edge-colouring of G exists. Generalizing a well-known theorem of Vizing [14], we showed in [6] that, for a star-multigraph G,where Δ(G) denotes the maximum degree (that is, the maximum number of edges incident with a vertex) of G. Star-multigraphs for which χ′(G) = Δ(G) are said to be Class 1, and otherwise they are Class 2.


2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


10.37236/370 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Charles J. Colbourn ◽  
Anthony D. Forbes ◽  
Mike J. Grannell ◽  
Terry S. Griggs ◽  
Petteri Kaski ◽  
...  

Properties of the 11$\,$084$\,$874$\,$829 Steiner triple systems of order 19 are examined. In particular, there is exactly one 5-sparse, but no 6-sparse, STS(19); there is exactly one uniform STS(19); there are exactly two STS(19) with no almost parallel classes; all STS(19) have chromatic number 3; all have chromatic index 10, except for 4$\,$075 designs with chromatic index 11 and two with chromatic index 12; all are 3-resolvable; and there are exactly two 3-existentially closed STS(19).


2017 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Kemal Toker

$\Gamma (SL_{X})$ is defined and has been investigated in (Toker, 2016). In this paper our main aim is to extend this study over  $\Gamma (SL_{X})$ to the tensor product. The diameter, radius, girth, domination number, independence number, clique number, chromatic number and chromatic index of $\Gamma (SL_{X_{1}})\otimes \Gamma (SL_{X_{2}})$ has been established. Moreover, we have determined when $\Gamma (SL_{X_{1}})\otimes \Gamma (SL_{X_{2}})$ is a perfect graph.


2005 ◽  
Vol Vol. 7 ◽  
Author(s):  
David R. Wood

International audience Let G be a graph with chromatic number χ (G). A vertex colouring of G is \emphacyclic if each bichromatic subgraph is a forest. A \emphstar colouring of G is an acyclic colouring in which each bichromatic subgraph is a star forest. Let χ _a(G) and χ _s(G) denote the acyclic and star chromatic numbers of G. This paper investigates acyclic and star colourings of subdivisions. Let G' be the graph obtained from G by subdividing each edge once. We prove that acyclic (respectively, star) colourings of G' correspond to vertex partitions of G in which each subgraph has small arboricity (chromatic index). It follows that χ _a(G'), χ _s(G') and χ (G) are tied, in the sense that each is bounded by a function of the other. Moreover the binding functions that we establish are all tight. The \emphoriented chromatic number χ ^→(G) of an (undirected) graph G is the maximum, taken over all orientations D of G, of the minimum number of colours in a vertex colouring of D such that between any two colour classes, all edges have the same direction. We prove that χ ^→(G')=χ (G) whenever χ (G)≥ 9.


1996 ◽  
Vol 5 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Amanda Chetwynd ◽  
Roland Häggkvist

We show that the total chromatic number of a simple k-chromatic graph exceeds the chromatic index by at most 18k ⅓ log ½ 3k.


1999 ◽  
Vol 70 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Celina M.H. de Figueiredo ◽  
João Meidanis ◽  
Célia Picinin de Mello

10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.


Sign in / Sign up

Export Citation Format

Share Document