scholarly journals Star multigraphs with three vertices of maximum degree

1986 ◽  
Vol 100 (2) ◽  
pp. 303-317 ◽  
Author(s):  
A. G. Chetwynd ◽  
A. J. W. Hilton

The graphs we consider here are either simple graphs, that is they have no loops or multiple edges, or are multigraphs, that is they may have more than one edge joining a pair of vertices, but again have no loops. In particular we shall consider a special kind of multigraph, called a star-multigraph: this is a multigraph which contains a vertex v*, called the star-centre, which is incident with each non-simple edge. An edge-colouring of a multigraph G is a map ø: E(G)→, where is a set of colours and E(G) is the set of edges of G, such that no two edges receiving the same colour have a vertex in common. The chromatic index, or edge-chromatic numberχ′(G) of G is the least value of || for which an edge-colouring of G exists. Generalizing a well-known theorem of Vizing [14], we showed in [6] that, for a star-multigraph G,where Δ(G) denotes the maximum degree (that is, the maximum number of edges incident with a vertex) of G. Star-multigraphs for which χ′(G) = Δ(G) are said to be Class 1, and otherwise they are Class 2.

2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


2012 ◽  
Vol 23 (04) ◽  
pp. 903-929
Author(s):  
LIANG HU ◽  
MENG ZHANG ◽  
YI ZHANG ◽  
JIJUN TANG

The graph exploration problem is to visit all the nodes of a connected graph by a mobile entity, e.g., a robot. The robot has no a priori knowledge of the topology of the graph or of its size. Cohen et al. [3] introduced label guided graph exploration which allows the system designer to add short labels to the graph nodes in a preprocessing stage; these labels can guide the robot in the exploration of the graph. In this paper, we address the problem of adjustable 1-bit label guided graph exploration. We focus on the labeling schemes that not only enable a robot to explore the graph but also allow the system designer to adjust the ratio of the number of different labels. This flexibility is necessary when maintaining different labels may have different costs or when the ratio is pre-specified. We present 1-bit labeling (two colors, namely black and white) schemes for this problem along with a labeling algorithm for generating the required labels. Given an n-node graph and a rational number ρ, we can design a 1-bit labeling scheme such that n/b ≥ ρ where b is the number of nodes labeled black. The robot uses O(ρ log Δ) bits of memory for exploring all graphs of maximum degree Δ. The exploration is completed in time [Formula: see text]. Moreover, our labeling scheme can work on graphs containing loops and multiple edges, while that of Cohen et al. focuses on simple graphs.


2019 ◽  
Vol 62 (1) ◽  
pp. 23-35
Author(s):  
Wouter Cames van Batenburg ◽  
Ross J. Kang

AbstractLet $G$ be a claw-free graph on $n$ vertices with clique number $\unicode[STIX]{x1D714}$, and consider the chromatic number $\unicode[STIX]{x1D712}(G^{2})$ of the square $G^{2}$ of $G$. Writing $\unicode[STIX]{x1D712}_{s}^{\prime }(d)$ for the supremum of $\unicode[STIX]{x1D712}(L^{2})$ over the line graphs $L$ of simple graphs of maximum degree at most $d$, we prove that $\unicode[STIX]{x1D712}(G^{2})\leqslant \unicode[STIX]{x1D712}_{s}^{\prime }(\unicode[STIX]{x1D714})$ for $\unicode[STIX]{x1D714}\in \{3,4\}$. For $\unicode[STIX]{x1D714}=3$, this implies the sharp bound $\unicode[STIX]{x1D712}(G^{2})\leqslant 10$. For $\unicode[STIX]{x1D714}=4$, this implies $\unicode[STIX]{x1D712}(G^{2})\leqslant 22$, which is within 2 of the conjectured best bound. This work is motivated by a strengthened form of a conjecture of Erdős and Nešetřil.


1995 ◽  
Vol 4 (2) ◽  
pp. 97-132 ◽  
Author(s):  
Jeong Han Kim

Let G be a graph with maximum degree Δ(G). In this paper we prove that if the girth g(G) of G is greater than 4 then its chromatic number, χ(G), satisfieswhere o(l) goes to zero as Δ(G) goes to infinity. (Our logarithms are base e.) More generally, we prove the same bound for the list-chromatic (or choice) number:provided g(G) < 4.


Author(s):  
H. P. Yap ◽  
K. H. Chew

AbstractWe prove Theorem 1: suppose G is a simple graph of order n having Δ(G) = n − k where k ≥ 5 and n ≥ max (13, 3k −3). If G contains an independent set of k − 3 vertices, then the TCC (Total Colouring Conjecture) is true. Applying Theorem 1, we also prove that the TCC is true for any simple graph G of order n having Δ(G) = n −5. The latter result together with some earlier results confirm that the TCC is true for all simple graphs whose maximum degree is at most four and for all simple graphs of order n having maximum degree at least n − 5.


1997 ◽  
Vol 6 (3) ◽  
pp. 295-313 ◽  
Author(s):  
ROLAND HÄGGKVIST ◽  
JEANNETTE JANSSEN

In this paper we show that the list chromatic index of the complete graph Kn is at most n. This proves the list-chromatic conjecture for complete graphs of odd order. We also prove the asymptotic result that for a simple graph with maximum degree d the list chromatic index exceeds d by at most [Oscr ](d2/3√log d).


Author(s):  
H. P. Yap ◽  
Wang Jian-Fang ◽  
Zhang Zhongfu

AbstractUsing a new proof technique of the first author (by adding a new vertex to a graph and creating a total colouring of the old graph from an edge colouring of the new graph), we prove that the TCC (Total Colouring Conjecture) is true for any graph G of order n having maximum degree at least n - 4. These results together with some earlier results of M. Rosenfeld and N. Vijayaditya (who proved that the TCC is true for graphs having maximum degree at most 3), and A. V. Kostochka (who proved that the TCC is true for graphs having maximum degree 4) confirm that the TCC is true for graphs whose maximum degree is either very small or very big.


10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.


1987 ◽  
Vol 102 (2) ◽  
pp. 211-221 ◽  
Author(s):  
A. J. W. Hilton ◽  
P. D. Johnson

In this paper, multigraphs will have no loops. For a multigraph G, the least number of colours needed to colour the edges of G in such a way that no two edges on the same vertex of G have the same colour, is called the edge-chromatic number, or the chromatic index, of G, and denoted χ′(G). It is clear that if Δ(G) denotes the maximum degree of G, then Δ(G) ≤ χ′(G). If Δ(G) = χ′(G), then G is Class 1, and otherwise G is Class 2.


10.37236/6267 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Tim E. Wilson ◽  
David R. Wood

An anagram is a word of the form $WP$ where $W$ is a non-empty word and $P$ is a permutation of $W$. We study anagram-free graph colouring and give bounds on the chromatic number. Alon et al.[Random Structures & Algorithms 2002] asked whether anagram-free chromatic number is bounded by a function of the maximum degree. We answer  this question in the negative by constructing graphs with maximum degree 3 and unbounded anagram-free chromatic number. We also prove upper and lower bounds on the anagram-free chromatic number of trees in terms of their radius and pathwidth. Finally, we explore extensions to edge colouring and $k$-anagram-free colouring.


Sign in / Sign up

Export Citation Format

Share Document