Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters

2017 ◽  
Vol 46 (4) ◽  
pp. 1137-1148 ◽  
Author(s):  
Lara Schlaffke ◽  
Robert Rehmann ◽  
Martijn Froeling ◽  
Rudolf Kley ◽  
Martin Tegenthoff ◽  
...  
2021 ◽  
pp. 028418512110582
Author(s):  
Takumi Yokohama ◽  
Motoyuki Iwasaki ◽  
Daisuke Oura ◽  
Sho Furuya ◽  
Yoshimasa Niiya

Background Recent studies have indicated that injuries such as muscle tears modify the microstructural integrity of muscle, leading to substantial alterations in measured diffusion parameters. Therefore, the fractional anisotropy (FA) value decreases. However, we hypothesized that soft tissue, such as muscle tissue, undergoes reversible changes under conditions of compression without fiber injury. Purpose To evaluate the FA change due to compression in muscle tissue without fiber injury. Material and Methods Diffusion tensor imaging (DTI) was performed on both feet of 10 healthy volunteers (mean age = 35.0 ± 10.39 years; age range = 23–52 years) using a 3.0-T magnetic resonance imaging (MRI) scanner with an eight-channel phased array knee coil. An MRI-compatible sphygmomanometer was applied to the individuals’ lower legs and individuals were placed in a compressed state. Then, rest intervals of 5 min were set in re-rest state after compression. The FA value, apparent diffusion coefficient (ADC), and eigenvalues (λ1, λ2, λ3) of the gastrocnemius and soleus muscle were measured at each state. Results The mean FA values increased in all muscles in a compressed state, while the mean λ3 decreased. In all muscles, significant differences were found between the rest and compressed states in terms of mean FA and λ3 ( P < 0.0001). Conclusion We confirmed the reversibility of the DTI metrics, which suggests that there was no muscle injury during this study. In cases of compression without fiber injury, the FA value increases, because fibers are strongly aligned in the longitudinal direction.


Author(s):  
O. R. Vasiukova ◽  
M. I. Akhlebinina ◽  
A. V. Manzhurtsev ◽  
P. E. Menshchikov ◽  
M. V. Ublinskiy ◽  
...  

Author(s):  
Daniele Bruschetta ◽  
Giuseppe Anastasi ◽  
Veronica Andronaco ◽  
Filippo Cascio ◽  
Giuseppina Rizzo ◽  
...  

2009 ◽  
Vol 22 (10) ◽  
pp. 1047-1053 ◽  
Author(s):  
Nina F. Schwenzer ◽  
Günter Steidle ◽  
Petros Martirosian ◽  
Christina Schraml ◽  
Fabian Springer ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Ying Wei ◽  
Caihong Wang ◽  
Jingchun Liu ◽  
Peifang Miao ◽  
Sen Wei ◽  
...  

Neurological deficits after stroke are closely related to white matter microstructure damage. However, secondary changes in white matter microstructure after pontine infarction (PI) in the whole brain remain unclear. This study aimed to investigate the correlation of diffusion kurtosis imaging (DKI)-derived diffusion and kurtosis parameters of abnormal white matter tracts with behavioral function in patients with chronic PI. Overall, 60 patients with unilateral chronic PI (33 patients with left PI and 27 patients with right PI) and 30 normal subjects were recruited and underwent DKI scans. Diffusion parameters derived from diffusion tensor imaging (DTI) and DKI and kurtosis parameters derived from DKI were obtained. Between-group differences in multiple parameters were analyzed to assess the changes in abnormal white matter microstructure. Moreover, we also calculated the sensitivities of different diffusion and kurtosis parameters of DTI and DKI for identifying abnormal white matter tracts. Correlations between the DKI-derived parameters in secondary microstructure changes and behavioral scores in the PI were analyzed. Compared with the NC group, both left PI and right PI groups showed more extensive perilesional and remote white matter microstructure changes. The DKI-derived diffusion parameters showed higher sensitivities than did the DTI-derived parameters. Further, DKI-derived diffusion and kurtosis parameters in abnormal white matter regions were correlated with impaired motor and cognitive function in patients with PI. In conclusion, PI could lead to extensive white matter tracts impairment in perilesional and remote regions. Further, the diffusion and kurtosis parameters could be complementary for identifying comprehensive tissue microstructural damage after PI.


Neurosurgery ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. E273-E273
Author(s):  
Christopher Murphy ◽  
Erjon Agushi ◽  
Zhangjie Su ◽  
Rainer Hinz ◽  
Federico Roncaroli ◽  
...  

Abstract INTRODUCTION Gliomas are highly infiltrative primary brain tumours. Glioma infiltration is difficult to identify clinically using conventional diagnostic imaging. We used diffusion tensor imaging (DTI) to identify glioma infiltration in peritumour white matter (WM) and characterized differences between histological subtypes. METHODS We recruited 8 patients with a histological diagnosis of grade II or III glioma and 10 healthy controls. We compared fractional anisotropy (FA) maps of each patient against the control group using SPM8 (Matlab 2014a) to identify regions of glioma infiltration. The FA and mean diffusivity (MD) of formerly WM matter tumour regions, infiltrated WM and normal appearing WM were compared with a 2-sample t-test and characterized with respect to normal control data. RESULTS Our results have identified radiological evidence of infiltration in the peri-tumour WM of glioma patients. The infiltrated region of oligodendrogliomas extended further than that of astrocytomas. Oligodendrogliomas preferentially infiltrated larger WM tracts, whereas astrocytomas infiltrated more peripheral WM. In all grades, the 3 regions had significantly different diffusion parameters and there were significant differences between oligodendrogliomas and astrocytomas. CONCLUSION We identified previously unrecognized study wide significant changes in the peri-tumour WM of gliomas. Despite the known propensity of these tumours to infiltrate WM we found no significant DTI changes distant to the tumour. Our DTI results suggest oligodendrogliomas and astrocytomas demonstrate different infiltrative patterns, which highlights the need for astrocytomas and oligodendrogliomas to be studied separately.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1521
Author(s):  
Johannes Forsting ◽  
Marlena Rohm ◽  
Martijn Froeling ◽  
Anne-Katrin Güttsches ◽  
Matthias Vorgerd ◽  
...  

Background: Muscle diffusion tensor imaging (mDTI) is a promising surrogate biomarker in the evaluation of muscular injuries and neuromuscular diseases. Since mDTI metrics are known to vary between different muscles, separation of different muscles is essential to achieve muscle-specific diffusion parameters. The commonly used technique to assess DTI metrics is parameter maps based on manual segmentation (MSB). Other techniques comprise tract-based approaches, which can be performed in a previously defined volume. This so-called volume-based tractography (VBT) may offer a more robust assessment of diffusion metrics and additional information about muscle architecture through tract properties. The purpose of this study was to assess DTI metrics of human calf muscles calculated with two segmentation techniques—MSB and VBT—regarding their inter-rater reliability in healthy and dystrophic calf muscles. Methods: 20 healthy controls and 18 individuals with different neuromuscular diseases underwent an MRI examination in a 3T scanner using a 16-channel Torso XL coil. DTI metrics were assessed in seven calf muscles using MSB and VBT. Coefficients of variation (CV) were calculated for both techniques. MSB and VBT were performed by two independent raters to assess inter-rater reliability by ICC analysis and Bland-Altman plots. Next to analysis of DTI metrics, the same assessments were also performed for tract properties extracted with VBT. Results: For both techniques, low CV were found for healthy controls (≤13%) and neuromuscular diseases (≤17%). Significant differences between methods were found for all diffusion metrics except for λ1. High inter-rater reliability was found for both MSB and VBT (ICC ≥ 0.972). Assessment of tract properties revealed high inter-rater reliability (ICC ≥ 0.974). Conclusions: Both segmentation techniques can be used in the evaluation of DTI metrics in healthy controls and different NMD with low rater dependency and high precision but differ significantly from each other. Our findings underline that the same segmentation protocol must be used to ensure comparability of mDTI data.


Sign in / Sign up

Export Citation Format

Share Document