scholarly journals High Inter-Rater Reliability of Manual Segmentation and Volume-Based Tractography in Healthy and Dystrophic Human Calf Muscle

Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1521
Author(s):  
Johannes Forsting ◽  
Marlena Rohm ◽  
Martijn Froeling ◽  
Anne-Katrin Güttsches ◽  
Matthias Vorgerd ◽  
...  

Background: Muscle diffusion tensor imaging (mDTI) is a promising surrogate biomarker in the evaluation of muscular injuries and neuromuscular diseases. Since mDTI metrics are known to vary between different muscles, separation of different muscles is essential to achieve muscle-specific diffusion parameters. The commonly used technique to assess DTI metrics is parameter maps based on manual segmentation (MSB). Other techniques comprise tract-based approaches, which can be performed in a previously defined volume. This so-called volume-based tractography (VBT) may offer a more robust assessment of diffusion metrics and additional information about muscle architecture through tract properties. The purpose of this study was to assess DTI metrics of human calf muscles calculated with two segmentation techniques—MSB and VBT—regarding their inter-rater reliability in healthy and dystrophic calf muscles. Methods: 20 healthy controls and 18 individuals with different neuromuscular diseases underwent an MRI examination in a 3T scanner using a 16-channel Torso XL coil. DTI metrics were assessed in seven calf muscles using MSB and VBT. Coefficients of variation (CV) were calculated for both techniques. MSB and VBT were performed by two independent raters to assess inter-rater reliability by ICC analysis and Bland-Altman plots. Next to analysis of DTI metrics, the same assessments were also performed for tract properties extracted with VBT. Results: For both techniques, low CV were found for healthy controls (≤13%) and neuromuscular diseases (≤17%). Significant differences between methods were found for all diffusion metrics except for λ1. High inter-rater reliability was found for both MSB and VBT (ICC ≥ 0.972). Assessment of tract properties revealed high inter-rater reliability (ICC ≥ 0.974). Conclusions: Both segmentation techniques can be used in the evaluation of DTI metrics in healthy controls and different NMD with low rater dependency and high precision but differ significantly from each other. Our findings underline that the same segmentation protocol must be used to ensure comparability of mDTI data.

2021 ◽  
pp. 1-14
Author(s):  
R. Rehmann ◽  
C. Schneider-Gold ◽  
M. Froeling ◽  
A.K. Güttsches ◽  
M. Rohm ◽  
...  

Background: Myotonic Dystrophies type 1 and type 2 are hereditary myopathies with dystrophic muscle degeneration in varying degrees. Differences in muscle diffusion between both diseases have not been evaluated yet. Objective: To evaluate the ability to of muscle diffusion tensor imaging (mDTI) and Dixon fat-quantification to distinguish between Myotonic dystrophy (DM) type 1 and type 2 and if both diseases show distinct muscle involvement patterns. Methods: We evaluated 6 thigh and 7 calf muscles (both legs) of 10 DM 1 and 13 DM 2 and 28 healthy controls (HC) with diffusion tensor imaging, T1w and mDixonquant sequences in a 3T MRI scanner. The quantitative mDTI-values axial diffusivity (λ1), mean diffusivity (MD), radial diffusivity (RD) and fractional anisotropy (FA) as well as fat-fraction were analysed. CTG-Triplett repeat-length of DM 1 patients was correlated to diffusion metrics and fat-fraction. Results: mDTI showed significant differences between DM 1 and DM 2 vs. healthy controls in diffusion parameters of the thigh (all p < 0.001) except for FA (p = 0.0521 / 0.8337). In calf muscles mDTI showed significant differences between DM 1 and DM 2 patients (all p < 0.0001) as well as between DM 1 patients and controls (all p = 0.0001). Thigh muscles had a significant higher fat-fraction in both groups vs. controls (p < 0.05). There was no correlation of CTG triplet length with mDTI values and fat-fraction. Discussion: mDTI reveals specific changes of the diffusion parameters and fat-fraction in muscles of DM 1 and DM 2 patients. Thus, the quantitative MRI methods presented in this study provide a powerful tool in differential diagnosis and follow-up of DM 1 and DM 2, however, the data must be validated in larger studies.


Author(s):  
Daniele Bruschetta ◽  
Giuseppe Anastasi ◽  
Veronica Andronaco ◽  
Filippo Cascio ◽  
Giuseppina Rizzo ◽  
...  

2015 ◽  
Vol 43 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Conrad Rockel ◽  
Michael D. Noseworthy

2017 ◽  
Vol 46 (4) ◽  
pp. 1137-1148 ◽  
Author(s):  
Lara Schlaffke ◽  
Robert Rehmann ◽  
Martijn Froeling ◽  
Rudolf Kley ◽  
Martin Tegenthoff ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 632-P
Author(s):  
MASOUD EDALATI ◽  
CHRISTOPHER J. SORENSEN ◽  
MARY HASTINGS ◽  
MOHAMED A. ZAYED ◽  
MICHAEL J. MUELLER ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 974
Author(s):  
Hayfa Sharif ◽  
Caroline L. Hoad ◽  
Nichola Abrehart ◽  
Penny A. Gowland ◽  
Robin C. Spiller ◽  
...  

Background: Functional constipation in children is common. Management of this condition can be challenging and is often based on symptom reports. Increased, objective knowledge of colonic volume changes in constipation compared to health could provide additional information. However, very little data on paediatric colonic volume is available except from methods that are invasive or require unphysiological colonic preparations. Objectives: (1) To measure volumes of the undisturbed colon in children with functional constipation (FC) using magnetic resonance imaging (MRI) and provide initial normal range values for healthy controls, and (2) to investigate possible correlation of colonic volume with whole gut transit time (WGTT). Methods: Total and regional (ascending, transverse, descending, sigmoid, and rectum) colon volumes were measured from MRI images of 35 participants aged 7–18 years (16 with FC and 19 healthy controls), and corrected for body surface area. Linear regression was used to explore the relationship between total colon volume and WGTT. Results: Total colonic volume was significantly higher, with a median (interquartile range) of 309 mL (243–384 mL) for the FC group than for the healthy controls of 227 mL (180–263 mL). The largest increase between patients and controls was in the sigmoid colon–rectum region. In a linear regression model, there was a positive significant correlation between total colonic volume and WGTT (R = 0.56, p = 0.0005). Conclusions: This initial study shows increased volumes of the colon in children with FC, in a physiological state, without use of any bowel preparation. Increased knowledge of colonic morphology may improve understanding of FC in this age group and help to direct treatment.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199347
Author(s):  
Romulo V de Oliveira ◽  
João S Pereira

Background Diffusion tensor imaging has emerged as a promising tool for quantitative analysis of neuronal damage in Parkinson disease, with potential value for diagnostic and prognostic evaluation. Purpose The aim of this study was to examine Parkinson disease-associated alterations in specific brain regions revealed by diffusion tensor imaging and how such alterations correlate with clinical variables. Material and Methods Diffusion tensor imaging was performed on 42 Parkinson disease patients and 20 healthy controls with a 1.5-T scanner. Manual fractional anisotropy measurements were performed for the ventral, intermediate, and dorsal portions of the substantia nigra, as well as for the cerebral peduncles, putamen, thalamus, and supplementary motor area. The correlation analysis between these measurements and the clinical variables was performed using χ2 variance and multiple linear regression. Results Compared to healthy controls, Parkinson disease patients had significantly reduced fractional anisotropy values in the substantia nigra ( P < .05). Some fractional anisotropy measurements in the substantia nigra correlated inversely with duration of Parkinson disease and Parkinson disease severity scores. Reduced fractional anisotropy values in the substantia nigra were also correlated inversely with age variable. fractional anisotropy values obtained for the right and left putamen varied significantly between males and females in both groups. Conclusion Manual fractional anisotropy measurements in the substantia nigra were confirmed to be feasible with a 1.5-T scanner. Diffusion tensor imaging data can be used as a reliable biomarker of Parkinson disease that can be used to support diagnosis, prognosis, and progression/treatment monitoring.


2021 ◽  
pp. 1-8
Author(s):  
Yi-Bin Xi ◽  
Xu-Sha Wu ◽  
Long-Biao Cui ◽  
Li-Jun Bai ◽  
Shuo-Qiu Gan ◽  
...  

Background Neuroimaging- and machine-learning-based brain-age prediction of schizophrenia is well established. However, the diagnostic significance and the effect of early medication on first-episode schizophrenia remains unclear. Aims To explore whether predicted brain age can be used as a biomarker for schizophrenia diagnosis, and the relationship between clinical characteristics and brain-predicted age difference (PAD), and the effects of early medication on predicted brain age. Method The predicted model was built on 523 diffusion tensor imaging magnetic resonance imaging scans from healthy controls. First, the brain-PAD of 60 patients with first-episode schizophrenia, 60 healthy controls and 21 follow-up patients from the principal data-set and 40 pairs of individuals in the replication data-set were calculated. Next, the brain-PAD between groups were compared and the correlations between brain-PAD and clinical measurements were analysed. Results The patients showed a significant increase in brain-PAD compared with healthy controls. After early medication, the brain-PAD of patients decreased significantly compared with baseline (P < 0.001). The fractional anisotropy value of 31/33 white matter tract features, which related to the brain-PAD scores, had significantly statistical differences before and after measurements (P < 0.05, false discovery rate corrected). Correlation analysis showed that the age gap was negatively associated with the positive score on the Positive and Negative Syndrome Scale in the principal data-set (r = −0.326, P = 0.014). Conclusions The brain age of patients with first-episode schizophrenia may be older than their chronological age. Early medication holds promise for improving the patient's brain ageing. Neuroimaging-based brain-age prediction can provide novel insights into the understanding of schizophrenia.


2021 ◽  
pp. 028418512110582
Author(s):  
Takumi Yokohama ◽  
Motoyuki Iwasaki ◽  
Daisuke Oura ◽  
Sho Furuya ◽  
Yoshimasa Niiya

Background Recent studies have indicated that injuries such as muscle tears modify the microstructural integrity of muscle, leading to substantial alterations in measured diffusion parameters. Therefore, the fractional anisotropy (FA) value decreases. However, we hypothesized that soft tissue, such as muscle tissue, undergoes reversible changes under conditions of compression without fiber injury. Purpose To evaluate the FA change due to compression in muscle tissue without fiber injury. Material and Methods Diffusion tensor imaging (DTI) was performed on both feet of 10 healthy volunteers (mean age = 35.0 ± 10.39 years; age range = 23–52 years) using a 3.0-T magnetic resonance imaging (MRI) scanner with an eight-channel phased array knee coil. An MRI-compatible sphygmomanometer was applied to the individuals’ lower legs and individuals were placed in a compressed state. Then, rest intervals of 5 min were set in re-rest state after compression. The FA value, apparent diffusion coefficient (ADC), and eigenvalues (λ1, λ2, λ3) of the gastrocnemius and soleus muscle were measured at each state. Results The mean FA values increased in all muscles in a compressed state, while the mean λ3 decreased. In all muscles, significant differences were found between the rest and compressed states in terms of mean FA and λ3 ( P < 0.0001). Conclusion We confirmed the reversibility of the DTI metrics, which suggests that there was no muscle injury during this study. In cases of compression without fiber injury, the FA value increases, because fibers are strongly aligned in the longitudinal direction.


Sign in / Sign up

Export Citation Format

Share Document