Evidence for positive selection in the extracellular domain of human cytomegalovirus encoded G protein-coupled receptor US28

2011 ◽  
Vol 83 (7) ◽  
pp. 1255-1261 ◽  
Author(s):  
Xiaoyan Gong ◽  
Abinash Padhi
2018 ◽  
Author(s):  
Benjamin A. Krishna ◽  
Monica S. Humby ◽  
William E. Miller ◽  
Christine M. O’Connor

AbstractHuman cytomegalovirus (HCMV) is a ubiquitous pathogen that undergoes latency in cells of the hematopoietic compartment, though the mechanisms underlying establishment and maintenance of latency remain elusive. We previously reported that the HCMV-encoded G-protein coupled receptor (GPCR) homolog,US28is required for successful latent infection. We now show that US28 protein (pUS28) providedin transcomplements the US28Δ lytic phenotype in myeloid cells, suggesting that sustained US28 expression is necessary for long-term latency. Furthermore, expression of pUS28 at the time of infection represses transcription from the major immediate early promoter (MIEP) within 24 hours. However, this repression is only maintained in the presence of continual pUS28 expression providedin trans. Our data also reveal that pUS28-mediated signaling attenuates both expression and phosphorylation of cellular fos (c-fos), an AP-1 transcription factor subunit, to repress MIEP-driven transcription. AP-1 binds to the MIEP and promotes lytic replication, and in line with this, we find that US28Δ infection results in an increase in AP-1 binding to the MIEP, compared to wild type latent infection. Pharmacological inhibition of c-fos represses the MIEP during US28Δ infection to similar levels we observe during wild type latent infection. Together, our data reveal that US28 is required for both establishment and long-term maintenance of HCMV latency, which is modulated, at least in part, by repressing functional AP-1 binding to the MIEP.Significance StatementHuman cytomegalovirus (HCMV) is a wise-spread pathogen that remains with an individual for life in a quiescent/latent state, posing little threat to an otherwise healthy person. However, when an individual’s immune system is severely compromised, HCMV can reactivate to its active/lytic state, resulting in viral spread and disease that is often fatal. The biological mechanisms underlying HCMV latency and reactivation remain poorly understood. Herein we show that the viral-encoded G-protein coupled receptor (GPCR)US28aids in the establishment and the maintenance of viral latency. Furthermore, we find that US28 modulates host cell proteins to suppress viral processes associated with active/lytic replication, thereby promoting latent infection. This work provides mechanism by which HCMV modulates the host cell environment to its advantage.


Nature ◽  
1990 ◽  
Vol 344 (6268) ◽  
pp. 774-777 ◽  
Author(s):  
M. S. Chee ◽  
S. C. Satchwell ◽  
E. Preddie ◽  
K. M. Weston ◽  
B. G. Barrell

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A321-A322
Author(s):  
Joanna K Filipowska ◽  
Nagesha G Kondegowda ◽  
Rupangi C Vasavada

Abstract Our lab has shown that RANK (Receptor activator of the NF-κB) by interacting with its ligand, RANKL, inhibits ß-cell proliferation and survival; which can be reversed by Osteoprotegerin (OPG). Recently, the G protein-coupled receptor LGR4 (leucine-rich repeat-containing G protein-coupled receptor 4), which binds R-spondin (RSPO), was identified as a novel receptor for RANKL in osteoclast precursor cells. Thus, RANKL can bind two distinct receptors, RANK and LGR4 in osteoclasts, leading to opposite effects on osteoclastogenesis. LGR4 is expressed in rodent and human ß-cells, but the role of this receptor in ß-cells remains unknown. We postulated that LGR4 through its interaction with RANKL is involved in regulating ß-cell survival and proliferation. Our data indicate expression of specific LGR4 family members, Lgr4, Rank, Rankl, is modulated by stressors, such as cytokines, ER stress, diabetes and aging, in INS1 cells, rodent and human islets. Knocking down Lgr4 in INS1 cells or rodent islets has no significant effect on ß-cell proliferation but is detrimental for ß-cell survival in basal and cytokine-stimulated conditions. We also propose that the soluble extracellular domain of LGR4 (LGR4-ECD), which binds to its ligands (RSPO/RANKL), holds therapeutic potential like OPG, by inhibiting the interaction between RANKL/RANK. At 200ng/ml LGR4-ECD significantly enhances young adult (8-12-week-old) and aged (1.y.o.) rodent ß-cell proliferation, as well as human ß-cell proliferation, in islets from not only control subjects (45±17 y.o.), but also with Type 2 diabetes (48±7 y.o.). Additionally, LGR4-ECD significantly promotes mouse and human ß-cell survival against cytokine-induced cell death. Future studies will determine the physiological role of LGR4 and the therapeutic potential of LGR4-ECD on the beta cell in vivo in basal conditions and in the setting of diabetes. Acknowledgements: Funding: JDRF postdoctoral fellowship # 3-PDF-2020-936-A-N to JF; Human Islets: IIDP


2019 ◽  
Vol 294 (44) ◽  
pp. 16297-16308 ◽  
Author(s):  
Jeffrey R. van Senten ◽  
Maarten P. Bebelman ◽  
Tian Shu Fan ◽  
Raimond Heukers ◽  
Nick D. Bergkamp ◽  
...  

2007 ◽  
Vol 104 (35) ◽  
pp. 13942-13947 ◽  
Author(s):  
C. Parthier ◽  
M. Kleinschmidt ◽  
P. Neumann ◽  
R. Rudolph ◽  
S. Manhart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document