Isolation and characterization of periaxolemmal and axolemmal enriched membrane fractions from the rat central nervous system

1992 ◽  
Vol 32 (4) ◽  
pp. 593-604 ◽  
Author(s):  
V. S. Sapirstein ◽  
R. Durrie ◽  
B. Cherksey ◽  
M. E. Beard ◽  
C. J. Flynn ◽  
...  
Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 1033-1044 ◽  
Author(s):  
T Watanabe ◽  
D R Kankel

Abstract Previous genetic studies have shown that wild-type function of the l(1)ogre (lethal (1) optic ganglion reduced) locus is essential for the generation and/or maintenance of the postembryonic neuroblasts including those from which the optic lobe is descended. In the present study molecular isolation and characterization of the l(1)ogre locus was carried out to study the structure and expression of this gene in order to gain information about the nature of l(1)ogre function and its relevance to the development of the central nervous system. About 70 kilobases (kb) of genomic DNA were isolated that spanned the region where l(1)ogre was known to reside. Southern analysis of a l(1)ogre mutation and subsequent P element-mediated DNA transformation mapped the l(1)ogre+ function within a genomic fragment of 12.5 kb. Northern analyses showed that a 2.9-kb message transcribed from this 12.5-kb region represented l(1)ogre. A 2.15-kb portion of a corresponding cDNA clone was sequenced. An open reading frame (ORF) of 1,086 base paris was found, and a protein sequence of 362 amino acids with one highly hydrophobic segment was deduced from conceptual translation of this ORF.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1778
Author(s):  
Pakhuri Mehta ◽  
Przemysław Miszta ◽  
Sławomir Filipek

The recent developments of fast reliable docking, virtual screening and other algorithms gave rise to discovery of many novel ligands of histamine receptors that could be used for treatment of allergic inflammatory disorders, central nervous system pathologies, pain, cancer and obesity. Furthermore, the pharmacological profiles of ligands clearly indicate that these receptors may be considered as targets not only for selective but also for multi-target drugs that could be used for treatment of complex disorders such as Alzheimer’s disease. Therefore, analysis of protein-ligand recognition in the binding site of histamine receptors and also other molecular targets has become a valuable tool in drug design toolkit. This review covers the period 2014–2020 in the field of theoretical investigations of histamine receptors mostly based on molecular modeling as well as the experimental characterization of novel ligands of these receptors.


1989 ◽  
Vol 264 (31) ◽  
pp. 18552-18560 ◽  
Author(s):  
N C Thambi ◽  
F Quan ◽  
W J Wolfgang ◽  
A Spiegel ◽  
M Forte

Author(s):  
Marleen H. van Coevorden-Hameete ◽  
Maarten J. Titulaer ◽  
Marco W. J. Schreurs ◽  
Esther de Graaff ◽  
Peter A. E. Sillevis Smitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document