Rainfall variability associated with Lamb weather types: The case for incorporating weather fronts

1995 ◽  
Vol 15 (11) ◽  
pp. 1241-1252 ◽  
Author(s):  
R. L. Wilby ◽  
N. Barnsley ◽  
G. O'Hare
2013 ◽  
Vol 26 (5) ◽  
pp. 1772-1790 ◽  
Author(s):  
Jian-Hua Qian ◽  
Andrew W. Robertson ◽  
Vincent Moron

Abstract The interannual variability of precipitation over the island of Borneo in association with El Niño–Southern Oscillation (ENSO) has been studied by using the Global Precipitation Climatology Centre (GPCC) gridded rain gauge precipitation, the NOAA Climate Prediction Center (CPC) Morphing Technique (CMORPH) satellite estimated precipitation, the Quick Scatterometer (QuikSCAT) satellite estimated sea winds, and the National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research (NCAR) reanalysis data. Analysis of the GPCC precipitation shows a dipolar structure of wet southwest versus dry central and northeast in precipitation anomalies associated with El Niño over Borneo Island during the austral summer [December–February (DJF)]. By using the 0.25° and 3-hourly CMORPH precipitation, it is found that rainfall over Borneo is strongly affected by the diurnal cycle of land–sea breezes. The spatial distribution of rainfall over Borneo depends on the direction of monsoonal winds. Weather typing analysis indicates that the dipolar structure of rainfall anomalies associated with ENSO is caused by the variability in the frequency of occurrence of different weather types. Rainfall is enhanced in the coastal region where sea breezes head against off-shore synoptic-scale low-level winds (i.e., in the lee side or wake area of the island), which is referred to here as the “wake effect.” In DJF of El Niño years, the northwesterly austral summer monsoon in southern Borneo is weaker than normal over the Maritime Continent and easterly winds are more frequent than normal over Borneo, acting to enhance rainfall over the southwest coast of the island. This coastal rainfall generation mechanism in different weather types explains the dipole pattern of a wet southwest versus dry northeast in the rainfall anomalies over Borneo Island in the El Niño years.


2008 ◽  
Vol 21 (2) ◽  
pp. 266-287 ◽  
Author(s):  
Vincent Moron ◽  
Andrew W. Robertson ◽  
M. Neil Ward ◽  
Ousmane Ndiaye

Abstract A k-means cluster analysis is used to summarize unfiltered daily atmospheric variability at regional scale over the western Sahel and eastern tropical North Atlantic during the boreal summer season [July–September (JAS)] 1961–98. The analysis employs zonal and meridional regional wind fields at 925, 700, and 200 hPa from the European Centre for Medium-Range Weather Forecasts reanalyses. An eight-cluster solution is shown to yield an integrated view of the complex regional circulation variability, without the need for explicit time filtering. Five of the weather types identified characterize mostly typical phases of westward-moving wave disturbances, such as African easterly waves (AEWs), and persistent monsoon surges, while the three others describe mostly different stages of the seasonal cycle. Their temporal sequencing describes a systematic monsoonal evolution, together with considerable variability at subseasonal and interannual time scales. Daily rainfall occurrence at 13 gauge stations in Senegal is found to be moderately well conditioned by the eight weather types, with positive rainfall anomalies usually associated with southerly wind anomalies at 925 hPa. Interannual variability of daily rainfall frequency is shown to depend substantially on the frequency of occurrence of weather types specific to the beginning and end of the JAS season, together with the number of persistent monsoon surges over the western Sahel. In contrast, year-to-year changes in the frequency of the weather types mostly associated with westward-moving waves such as AEWs are not found to influence seasonal frequency of occurrence of daily rainfall substantially. The fraction of seasonal rainfall variability related to weather-type frequency is found to have a strong relationship with tropical Pacific sea surface temperatures (SSTs): an El Niño (La Niña) event tends to be associated with a higher (lower) frequency of dry weather types during early and late JAS season with enhanced trade winds over the western Sahel, together with lower (higher) prevalence of persistent monsoon surges. The component of seasonal rainfall variability not related to weather-type frequency is characterized by changes in rainfall probability within each weather type, especially those occurring in the core of the JAS season; it exhibits a larger decadal component that is associated with an SST pattern previously identified with recent observed trends in Sahel rainfall.


2016 ◽  
Vol 67 (1) ◽  
pp. 61-69
Author(s):  
M Forouzangohar ◽  
R Setia ◽  
DD Wallace ◽  
CR Nitschke ◽  
LT Bennett

2015 ◽  
Vol 6 (1) ◽  
pp. 63-69
Author(s):  
S. Szegedi ◽  
I. Lázár ◽  
T. Tóth

This article has been withdrawn - upon request by authors - by Akadémiai Kiadó due to suspected plagiarism.


2014 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)
Keyword(s):  

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 886
Author(s):  
Abdul Azim Amirudin ◽  
Ester Salimun ◽  
Fredolin Tangang ◽  
Liew Juneng ◽  
Muhamad Zuhairi

This study investigates the individual and combined impacts of El Niño and the positive Indian Ocean Dipole (IOD) on the Southeast Asia (SEA) rainfall variability. Using composite and partial correlation techniques, it is shown that both inter-annual events have individually distinct impacts on the SEA rainfall anomaly distribution. The results showed that the impacts of the co-occurrence of El Niño and IOD events are significant compared to the individual effects of pure El Niño or pure IOD. During June-July-August and September-October-November, the individual impacts of the pure El Niño and IOD events are similar but less significant. Both events caused negative impacts over the southern part of SEA during June-July-August (JJA) and propagated northeastward/eastward during September-October-November (SON). Thus, there are significant negative impacts over the southern part of SEA during the co-occurrence of both events. The differential impacts on the anomalous rainfall patterns are due to the changes in the sea surface temperature (SST) surrounding the region. Additionally, the differences are also related to the anomalous regional atmospheric circulations that interact with the regional SST. The anomalous Walker circulation that connects the Indian Ocean and tropical Pacific Ocean also plays a significant role in determining the regional anomalous rainfall patterns.


Climate ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Benewinde Zoungrana ◽  
Christopher Conrad ◽  
Leonard Amekudzi ◽  
Michael Thiel ◽  
Evariste Da

Sign in / Sign up

Export Citation Format

Share Document