Probabilistic canonical correlation analysis forecasts, with application to tropical Pacific sea-surface temperatures

2013 ◽  
Vol 34 (5) ◽  
pp. 1405-1413 ◽  
Author(s):  
Daniel S. Wilks
2011 ◽  
Vol 24 (5) ◽  
pp. 1378-1395 ◽  
Author(s):  
Adrienne Tivy ◽  
Stephen E. L. Howell ◽  
Bea Alt ◽  
John J. Yackel ◽  
Thomas Carrieres

Abstract Canonical correlation analysis (CCA) is used to estimate the levels and sources of seasonal forecast skill for July ice concentration in Hudson Bay over the 1971–2005 period. July is an important transition month in the seasonal cycle of sea ice in Hudson Bay because it is the month when the sea ice clears enough to allow the first passage of ships to the Port of Churchill. Sea surface temperature (quasi global, North Atlantic, and North Pacific), Northern Hemisphere 500-mb geopotential height (z500), sea level pressure (SLP), and regional surface air temperature (SAT) are tested as predictors at 3-, 6-, and 9-month lead times. The model with the highest skill has three predictors—fall North Atlantic SST, fall z500, and fall SAT—and significant tercile forecast skill covering 61% of the Hudson Bay region. The highest skill for a single-predictor model is from fall North Atlantic SST (6-month lead). Fall SST explains 69% of the variance in July ice concentration in Hudson Bay and a possible atmospheric link that accounts for the lagged relationship is presented. CCA diagnostics suggest that changes in the subpolar North Atlantic gyre and the Atlantic multidecadal oscillation (AMO), reflected in sea surface temperature, precedes a deepening/weakening of the winter upper-air ridge northwest of Hudson Bay. Changes in the height of the ridge are reflected in the strength of the winter northwesterly winds over Hudson Bay that have a direct impact on the winter ice thickness distribution; anomalies in winter ice severity are later reflected in the pattern and timing of spring breakup. July ice concentration in Hudson Bay has declined by approximately 20% per decade between 1979 and 2007, and the hypothesized link to the AMO may help explain this significant loss of ice.


Sign in / Sign up

Export Citation Format

Share Document