Kinetics of thermal gas-phase decomposition of 2-bromopropene using static system

2006 ◽  
Vol 39 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Jan Nisar ◽  
Iftikhar A. Awan
1973 ◽  
Vol 51 (21) ◽  
pp. 3605-3619 ◽  
Author(s):  
C. Willis ◽  
R. A. Back

Preparation of di-imide by passing hydrazine vapor through a microwave discharge yields mixtures with NH3 containing typically about 15% N2H2, estimated from the gases evolved on decomposition. The behavior of the mixture (which melts at −65 °C) on warming from −196 to −30 °C suggests a strong interaction between the components. Measurements of magnetic susceptibility and e.p.r. experiments showed that N2H2 is not strongly paramagnetic, which with other observations points to a singlet rather than a triplet ground-state.Di-imide can be vaporized efficiently, together with NH3, by rapid warming, and the vapor is surprisingly long-lived, with a typical half-life of several minutes at room temperature. The near-u.v. (3200–4400 Å) absorption spectrum of the vapor was photographed; it shows well-defined but diffuse bands, with εmax = 6(± 3) at 3450 Å.Di-imide decomposes at room temperature in two ways:[Formula: see text][Formula: see text]Formation of NH3 was not observed but cannot be ruled out. The decomposition of the vapor is complicated by a sizeable and variable decomposition that occurs rapidly during the vaporization. The stoichiometry of this and the vapor-phase decomposition depends on total pressure and di-imide concentration. The kinetics of the decomposition of the vapor were studied from 22 to 200 °C by following the disappearance of N2H2 by absorption of light at 3450 Å, or the formation of N2H4 by absorption at 2400 Å, and by mass spectrometry. The kinetics are complex and can be either first- or second-order, or mixed, depending on surface conditions. The effect of olefin additives on the decomposition was studied, and is also complex.Mechanisms for the decomposition are discussed, including the possible role of trans-cis isomerization. The relatively long lifetime found for di-imide in the gas phase suggests that it may be an important intermediate in many reactions of hydronitrogen systems.


1978 ◽  
Vol 56 (10) ◽  
pp. 1435-1441 ◽  
Author(s):  
Andrzej Więckowski ◽  
Guy J. Collin

The gas phase photolysis of n-pentene was carried out in a static system using nitrogen resonance lines at [Formula: see text] and the bromine line at [Formula: see text] The mechanism for the photolysis was proposed and compared to what was concluded at 8.4 eV (147 nm, the xenon resonance line). The kinetics of the decomposition of the excited C3H5* radicals formed in the primary photochemical process and the C5H11* radicals formed by the addition of hydrogen atoms to the parent molecules were discussed. The investigations were extended to the n-C5D10 photolytic System. The observed decomposition rate constants of the excited pentyl radicals as well as the secondary non-equilibrium isotope effects agree with the data published earlier. It is concluded from these experiments that, at least at 7.6 eV, hot hydrogen atoms are produced.Only a small fraction of the C3H5* radicals décompose and yield aliène. At the same time the combined primary–secondary non-equilibrium isotope effects are much less than those calculated for the 'pure' primary isotope effects. To account for these observations, it is assumed that the C3H5* radicals are formed with a wide spread in the internal energies. Since the threshold of the decomposition of the excited C3H5* radical lies above its mean excess energy (calculated on the statistical basis), an analogy in the energy-distribution functions on the radicals activated photochemically and thermally may be suggested. If so, an inverse secondary isotope effect may contribute to the gross effect involved in the C3H5* radical decomposition.


1983 ◽  
Vol 14 (41) ◽  
Author(s):  
L. ZALOTAI ◽  
ZS. HUNYADI-ZOLTAN ◽  
T. BERCES ◽  
F. MARTA

2005 ◽  
Vol 7 (10) ◽  
pp. 2182
Author(s):  
David JohnsonPresent address: Department ◽  
Scott Carr ◽  
R. Anthony Cox

Sign in / Sign up

Export Citation Format

Share Document