Kinetics of the gas phase decomposition of di-tert-butyl peroxide

1967 ◽  
Vol 44 (9) ◽  
pp. 514 ◽  
Author(s):  
William A. Guillory



1973 ◽  
Vol 51 (21) ◽  
pp. 3605-3619 ◽  
Author(s):  
C. Willis ◽  
R. A. Back

Preparation of di-imide by passing hydrazine vapor through a microwave discharge yields mixtures with NH3 containing typically about 15% N2H2, estimated from the gases evolved on decomposition. The behavior of the mixture (which melts at −65 °C) on warming from −196 to −30 °C suggests a strong interaction between the components. Measurements of magnetic susceptibility and e.p.r. experiments showed that N2H2 is not strongly paramagnetic, which with other observations points to a singlet rather than a triplet ground-state.Di-imide can be vaporized efficiently, together with NH3, by rapid warming, and the vapor is surprisingly long-lived, with a typical half-life of several minutes at room temperature. The near-u.v. (3200–4400 Å) absorption spectrum of the vapor was photographed; it shows well-defined but diffuse bands, with εmax = 6(± 3) at 3450 Å.Di-imide decomposes at room temperature in two ways:[Formula: see text][Formula: see text]Formation of NH3 was not observed but cannot be ruled out. The decomposition of the vapor is complicated by a sizeable and variable decomposition that occurs rapidly during the vaporization. The stoichiometry of this and the vapor-phase decomposition depends on total pressure and di-imide concentration. The kinetics of the decomposition of the vapor were studied from 22 to 200 °C by following the disappearance of N2H2 by absorption of light at 3450 Å, or the formation of N2H4 by absorption at 2400 Å, and by mass spectrometry. The kinetics are complex and can be either first- or second-order, or mixed, depending on surface conditions. The effect of olefin additives on the decomposition was studied, and is also complex.Mechanisms for the decomposition are discussed, including the possible role of trans-cis isomerization. The relatively long lifetime found for di-imide in the gas phase suggests that it may be an important intermediate in many reactions of hydronitrogen systems.



1977 ◽  
Vol 8 (13) ◽  
pp. no-no
Author(s):  
V. V. ZORIN ◽  
S. S. ZLOTSKII ◽  
F. N. LATYPOVA ◽  
D. L. RAKHMANKULOV ◽  
B. V. UNKOVSKII






1976 ◽  
Vol 54 (4) ◽  
pp. 581-585 ◽  
Author(s):  
David K. Lewis

The homogeneous, gas phase thermal decomposition of di-tert-butyl peroxide has been studied in a single pulse shock tube. Samples containing 0.05% to 0.5% reactant in argon were heated to 528–677 K at total pressures of about 1 atm. Acetone and ethane were the only significant products. The reaction obeyed first order kinetics. The Arrhenius parameters, log A (s−1) = 15.33 ± 0.50, Eact (kJ/mol) = 152.3 ± 5.8, are in agreement with the bulk of the earlier reported results of lower temperature work, and with a recently reported result obtained via the very low pressure pyrolysis technique. Indications from some of the earlier work that the A factor may decline at high temperatures are not supported by the present study.



Sign in / Sign up

Export Citation Format

Share Document