EFFECT OF SOIL BUNDS ON RUNOFF, SOIL AND NUTRIENT LOSSES, AND CROP YIELD IN THE CENTRAL HIGHLANDS OF ETHIOPIA

2012 ◽  
Vol 25 (6) ◽  
pp. 554-564 ◽  
Author(s):  
Z. Adimassu ◽  
K. Mekonnen ◽  
C. Yirga ◽  
A. Kessler
2006 ◽  
Vol 49 (1) ◽  
pp. 47-59 ◽  
Author(s):  
X. Wang ◽  
R. D. Harmel ◽  
J. R. Williams ◽  
W. L. Harman

1995 ◽  
Vol 33 (2) ◽  
pp. 109-116 ◽  
Author(s):  
M.A. Zöbisch ◽  
C. Richter ◽  
B. Heiligtag ◽  
R. Schlott

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 962
Author(s):  
Ping Lei ◽  
Chengsheng Ni ◽  
Fangxin Chen ◽  
Sheng Wang ◽  
Shouqin Zhong ◽  
...  

Crop–hedgerow intercropping systems are important agroforestry systems for preventing soil degradation and soil nutrient losses on sloping cultivated land in the Three Gorges Reservoir (TGR) area of China. However, the mechanism by which hedgerow spatial layouts and the planting patterns affect soil nutrients and crop yields is still uncertain. A two-year field experiment was performed on a 10° slope to investigate the effects of slope position and different crop–hedgerow intercropping systems on soil physicochemical properties and crop yields. The treatments were a two-belt mulberry contour hedgerow (TM), a two-belt compound mulberry–vetiver hedgerow (TCMV), a two-belt compound mulberry–alfalfa hedgerow (TCMA), a seven-year-old two-belt mulberry contour hedgerow (7YTM), a seven-year-old mulberry border hedgerow (7YBM), a seven-year-old pure mulberry (7YPM), and a control treatment (CT, no hedgerows). In all treatments, except 7YPM, there was a significant (p < 0.05) increase in crop yield, clay content, soil total nitrogen (STN), acid-hydrolyzable nitrogen (AHN), and soil organic carbon (SOC) with declining slope position, whereas soil bulk density (BD), sand content, and soil pH showed the opposite trend. In TM, TCMV, TCMA, and 7YTM, the mustard yields and soil properties were better than those in CT, and there was no significant (p > 0.05) difference in mustard yield or soil properties between the upper-middle and lower-middle slope positions. Compared with CT, TCMV, and TCMA increased mustard yields by 8.28% and 9.86%, respectively, while 7YTM, 7YBM, and 7YPM reduced mustard yields by 7.69%, 17.69%, and 29.73%, respectively. TCMV and TCMA were confirmed to be viable intercropping systems for significantly reducing nutrient losses, improving soil quality, and changing soil nutrient distributions to maintain optimum crop yields on sloping lands.


Author(s):  
Steve Starrett ◽  
Yunseng Su ◽  
Travis Heier ◽  
Jamie Klein ◽  
Jeff Holste ◽  
...  
Keyword(s):  

EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
George Hochmuth ◽  
Laurie Trenholm ◽  
Don Rainey ◽  
Esen Momol ◽  
Claire Lewis ◽  
...  

Proper irrigation management is critical to conserve and protect water resources and to properly manage nutrients in the home landscape. How lawns and landscapes are irrigated directly impacts the natural environment, so landscape maintenance professionals and homeowners must adopt environmentally-friendly approaches to irrigation management. After selecting the right plant for the right place, water is the next critical factor to establish and maintain a healthy lawn and landscape. Fertilization is another important component of lawn and landscape maintenance, and irrigation must be applied correctly, especially following fertilization, to minimize potential nutrient losses. This publication supplements other UF/IFAS Extension publications that also include information on the role of soil and the root zone in irrigation management. This publication is designed to help UF/IFAS Extension county agents prepare materials to directly address nutrient losses from lawns and landscapes caused by inadequate irrigation management practices. This 6-page fact sheet was written by George Hochmuth, Laurie Trenholm, Don Rainey, Esen Momol, Claire Lewis, and Brian Niemann, and published by the UF Department of Soil and Water Science, October 2013. http://edis.ifas.ufl.edu/ss586


Sign in / Sign up

Export Citation Format

Share Document