scholarly journals Spatiotemporal dynamics of bacterial community composition in large shallow eutrophic Lake Taihu: High overlap between free‐living and particle‐attached assemblages

2017 ◽  
Vol 62 (4) ◽  
pp. 1366-1382 ◽  
Author(s):  
Xiangming Tang ◽  
Jianying Chao ◽  
Yi Gong ◽  
Yongping Wang ◽  
Steven W. Wilhelm ◽  
...  
2014 ◽  
Vol 60 (8) ◽  
pp. 517-524 ◽  
Author(s):  
Jin Zeng ◽  
Da-Yong Zhao ◽  
Peng Liu ◽  
Zhong-Bo Yu ◽  
Rui Huang ◽  
...  

Benthic macrofauna are considered to be an important part of the lacustrine ecosystem, and bioturbation may greatly affect the biogeochemical processes and microbial activities in sediments. In the present study, the bacterial community composition in sediments inhabited by 3 different types of benthic macrofauna (Corbicula fluminea, Chironomidae larvae, and tubificid worms) in the shallow and eutrophic Lake Taihu was studied to investigate the different effects of bioturbation on the composition of these communities. Microcosms were constructed, and culture-independent methods, including terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis, were performed to evaluate the bacterial communities. Analysis of similarities (ANOSIM) and multidimensional scaling (MDS) analysis of T-RFLP patterns demonstrated that differences in the bacterial community composition between the control and the macrofauna-inhabited sediments were not as great as expected, although the chemical properties of the sediments changed remarkably. Nevertheless, the dominant bacterial group in each type of macrofauna-inhabited sediment was different. Acidobacteria, Betaproteobacteria, and Deltaproteobacteria were the dominant bacterial groups in sediments inhabited by C. fluminea, tubificid worms, and Chironomidae larvae, respectively. The data obtained in this study are helpful for understanding the effects of bioturbation in a shallow, eutrophic lake.


2009 ◽  
Vol 55 (6) ◽  
pp. 776-782 ◽  
Author(s):  
Xiangming Tang ◽  
Guang Gao ◽  
Liping Zhu ◽  
Jianying Chao ◽  
Boqiang Qin

Organic aggregates (OA) in aquatic ecosystems harbour diverse microbial communities. The colonization and growth of OA-attached bacteria are important processes in the degradation and transformation of the particles. The development of efficient and comparative DNA extraction methods is one of the most critical steps in the study of the composition and diversity of OA-attached bacterial communities. To evaluate whether different DNA extraction procedures affect the measurement of bacterial community composition, we compared four in situ lysis procedures using OA from three locations in a shallow eutrophic lake (Lake Taihu, China). The extracted DNA was analyzed using denaturing gradient gel electrophoresis profiles. We found that the choice of DNA extraction protocol had a significant influence on the fingerprints of the OA-attached bacterial community. This was shown not only in the number of bands but also in their relative representation of certain DNA bands. Using the bead-beating DNA extraction method in the presence of hexadecyltrimethylammonium bromide, we found that crude microbial DNA could be extracted efficiently from different OA types. This protocol is reproducible and gives very pure DNA of relatively high molecular mass. More importantly, the protocol provided more representative and informative data on the diversity of OA-attached bacterial communities.


2011 ◽  
Vol 57 (4) ◽  
pp. 263-272 ◽  
Author(s):  
Keqiang Shao ◽  
Guang Gao ◽  
Boqiang Qin ◽  
Xiangming Tang ◽  
Yongping Wang ◽  
...  

Bacterial community structure and the effects of several environmental factors on bacterial community distribution were investigated in the sediment of the macrophyte-dominated and algae-dominated areas in a large, shallow, eutrophic freshwater lake (Lake Taihu, China). Surface sediment samples were collected at 6 sampling sites (3 sites from each of the 2 areas) on 15 February and 15 August 2009. Based on cluster analysis of the DGGE banding patterns, there were significant seasonal variations in the structure of the sediment bacterial community in the macrophyte- and algae-dominated areas, and site-specific variation within an area and between 2 areas. However, there were no significant between-area variations due to the large within-area variation. Analysis of DNA sequences showed that there were differences in the species composition of the sediment bacteria between the macrophyte- and algae-dominated area clone libraries. In the macrophyte-dominated area library, the bacterial community was dominated by Deltaproteobacteria, Verrucomicrobia, Acidobacteria, Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. OP10 was found in the library of this area but not in the algae-dominated area library. The algae-dominated area library was dominated by Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Acidobacteria. Cyanobacteria, Alphaproteobacteria, and Planctomycetes were found in this area library but not in the macrophyte-dominated area library. Canonical correspondence analysis demonstrated that total phosphorus and water temperature were the dominant environmental factors affecting bacterial community composition in the sediment.


2014 ◽  
Vol 81 (4) ◽  
pp. 1463-1471 ◽  
Author(s):  
Stefan Thiele ◽  
Bernhard M. Fuchs ◽  
Rudolf Amann ◽  
Morten H. Iversen

ABSTRACTDue to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washedin situto prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescencein situhybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather thande novocolonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.


2020 ◽  
Vol 27 (36) ◽  
pp. 44983-44994
Author(s):  
Wenjie Chang ◽  
Jieli Sun ◽  
Yong Pang ◽  
Songhe Zhang ◽  
Lixue Gong ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Jennifer Bachmann ◽  
Tabea Heimbach ◽  
Christiane Hassenrück ◽  
Germán A. Kopprio ◽  
Morten Hvitfeldt Iversen ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2757
Author(s):  
Alexa Hoke ◽  
Jason Woodhouse ◽  
Luca Zoccarato ◽  
Valerie McCarthy ◽  
Elvira de Eyto ◽  
...  

Extreme weather events are projected to increase in frequency and intensity as climate change continues. Heterotrophic bacteria play a critical role in lake ecosystems, yet little research has been done to determine how they are affected by such extremes. The purpose of this study was to use high-throughput sequencing to explore the bacterial community composition of a humic oligotrophic lake on the North Atlantic Irish coast and to assess the impacts on composition dynamics related to extreme weather events. Samples for sequencing were collected from Lough Feeagh on a fortnightly basis from April to November 2018. Filtration was used to separate free-living and particle-associated bacterial communities and amplicon sequencing was performed for the 16S rRNA V4 region. Two named storms, six high discharge events, and one drought period occurred during the sampling period. These events had variable, context-dependent effects on bacterial communities in Lough Feeagh. The particle-associated community was found to be more likely to respond to physical changes, such as mixing, while the free-living population responded to changes in nutrient and carbon concentrations. Generally, however, the high stability of the bacterial community observed in Lough Feeagh suggests that the bacterial community is relatively resilient to extreme weather events.


Sign in / Sign up

Export Citation Format

Share Document