scholarly journals Characterization of the interactions between Escherichia coli receptors, LPS and OmpC, and bacteriophage T4 long tail fibers

2016 ◽  
Vol 5 (6) ◽  
pp. 1003-1015 ◽  
Author(s):  
Ayaka Washizaki ◽  
Tetsuro Yonesaki ◽  
Yuichi Otsuka
Author(s):  
Akiyo Suga ◽  
Marina Kawaguchi ◽  
Tetsuro Yonesaki ◽  
Yuichi Otsuka

Bacteriophages are the most abundant and diverse biological entities on Earth. Phages exhibit strict host specificity that is largely conferred by adsorption. However, the mechanism underlying this phage–host specificity remains poorly understood. In this study, we examined the interaction between outer membrane protein C (OmpC), one of the Escherichia coli receptors, and the long tail fibers of bacteriophage T4. T4 phage uses OmpC of the K12 strain, but not of the O157 strain, for adsorption, even though OmpC from the two E. coli strains share 94% homology. We identified amino acids P177 and F182 in Loop 4 of the K12 OmpC as essential for T4 phage adsorption in the copresence of Loop 1 and Loop 5. Analyses of phage mutants capable of adsorbing to OmpC mutants demonstrated that amino acids at positions 937 and 942 of the gp37 protein, which is present in the digital tip (DT) region of the T4 long tail fibers, play an important role in adsorption. Furthermore, we created a T4 phage mutant library with artificial modifications in the DT region and isolated and characterized multiple phage mutants capable of adsorbing to OmpC of the O157 strain or lipopolysaccharide of the K12 strain. These results shed light on the mechanism underlying the phage–host specificity mediated by gp37 and OmpC and may be useful in the development of phage therapy via artificial modifications of the DT region of T4 phage. IMPORTANCE Understanding the host specificity of phages will lead to the development of phage therapy. The interaction between outer membrane protein C (OmpC), one of the Escherichia coli receptors, and the gp37 protein composing the digital tip (DT) region of the long tail fibers of bacteriophage T4 largely determines its host specificity. Here, we elucidated the amino acid residues important for the interaction between gp37 and OmpC. This result suggests that the shapes of both proteins at the binding interface play important roles in their interactions, which is likely mediated by multiple residues of both binding partners. Additionally, we successfully isolated multiple phage mutants capable of adsorbing to a variety of E. coli receptors using a mutant T4 phage library with artificial modifications in the DT region, providing a foundation for the alteration of the host specificity.


2010 ◽  
Vol 36 (2) ◽  
pp. 172-178 ◽  
Author(s):  
R. N. Chuprov-Netochin ◽  
N. M. Faizullina ◽  
N. N. Sykilinda ◽  
M. N. Simakova ◽  
V. V. Mesyanzhinov ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Emma L. Farquharson ◽  
Ashlyn Lightbown ◽  
Elsi Pulkkinen ◽  
Téa Russell ◽  
Brenda Werner ◽  
...  

Phages have demonstrated significant potential as therapeutics in bacterial disease control and as diagnostics due to their targeted bacterial host range. Host range has typically been defined by plaque assays; an important technique for therapeutic development that relies on the ability of a phage to form a plaque upon a lawn of monoculture bacteria. Plaque assays cannot be used to evaluate a phage’s ability to recognize and adsorb to a bacterial strain of interest if the infection process is thwarted post-adsorption or is temporally delayed, and it cannot highlight which phages have the strongest adsorption characteristics. Other techniques, such as classic adsorption assays, are required to define a phage’s “adsorptive host range.” The issue shared amongst all adsorption assays, however, is that they rely on the use of a complete bacteriophage and thus inherently describe when all adsorption-specific machinery is working together to facilitate bacterial surface adsorption. These techniques cannot be used to examine individual interactions between a singular set of a phage’s adsorptive machinery (like long tail fibers, short tail fibers, tail spikes, etc.) and that protein’s targeted bacterial surface receptor. To address this gap in knowledge we have developed a high-throughput, filtration-based, bacterial binding assay that can evaluate the adsorptive capability of an individual set of a phage’s adsorption machinery. In this manuscript, we used a fusion protein comprised of an N-terminal bioluminescent tag translationally fused to T4’s long tail fiber binding tip (gp37) to evaluate and quantify gp37’s relative adsorptive strength against the Escherichia coli reference collection (ECOR) panel of 72 Escherichia coli isolates. Gp37 could adsorb to 61 of the 72 ECOR strains (85%) but coliphage T4 only formed plaques on 8 of the 72 strains (11%). Overlaying these two datasets, we were able to identify ECOR strains incompatible with T4 due to failed adsorption, and strains T4 can adsorb to but is thwarted in replication at a step post-adsorption. While this manuscript only demonstrates our assay’s ability to characterize adsorptive capabilities of phage tail fibers, our assay could feasibly be modified to evaluate other adsorption-specific phage proteins.


2008 ◽  
Vol 74 (16) ◽  
pp. 5153-5158 ◽  
Author(s):  
Musafiri Karama ◽  
Carlton L. Gyles

ABSTRACT The objectives of this study were to induce and characterize verotoxin-encoding phages from a collection of 91 verotoxin-producing Escherichia coli (VTEC) O103:H2 strains of human and bovine origins. All the strains carried the vt1 gene, and two carried the vt2 gene as well. The phages were induced by UV irradiation and characterized by DNA restriction fragment length polymorphism (RFLP), genome size, morphology, and Q and P genes, characteristic of lambdoid phages. A total of 32 vt-positive phages were induced and isolated from 31 VTEC O103:H2 strains. Thirty phages were vt1 positive, and two were vt2 positive. Ten of the 30 vt1-positive phages (33.3%) were from cattle strains, and 20 (66.6%) were from human strains. The two vt2-positive phages were from human strains. Phages belonged to 21 RFLP profiles, of which 17 were single-phage profiles and 4 were multiple-phage profiles. The estimated genome size of the phages ranged from 34 to 84 kb. Two phages that were examined by electron microscopy possessed hexagonal heads with long tails, and one had an elongated head with a long tail. The Q and P genes were amplified in all 32 phages, and the Q-stxA1 gene region yielded an amplicon in 19 phages (59.3%). It is concluded that the VTEC O103:H2 strains of human origin were more readily inducible than those of bovine origin and that the genotypic profiles of verotoxin-encoding phages were highly diverse, as revealed by their RFLP profiles.


1976 ◽  
Vol 17 (2) ◽  
pp. 622-641 ◽  
Author(s):  
D P Snustad ◽  
M A Tigges ◽  
K A Parson ◽  
C J Bursch ◽  
F M Caron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document