scholarly journals Manipulating interactions between T4 phage long tail fibers and Escherichia coli receptors

Author(s):  
Akiyo Suga ◽  
Marina Kawaguchi ◽  
Tetsuro Yonesaki ◽  
Yuichi Otsuka

Bacteriophages are the most abundant and diverse biological entities on Earth. Phages exhibit strict host specificity that is largely conferred by adsorption. However, the mechanism underlying this phage–host specificity remains poorly understood. In this study, we examined the interaction between outer membrane protein C (OmpC), one of the Escherichia coli receptors, and the long tail fibers of bacteriophage T4. T4 phage uses OmpC of the K12 strain, but not of the O157 strain, for adsorption, even though OmpC from the two E. coli strains share 94% homology. We identified amino acids P177 and F182 in Loop 4 of the K12 OmpC as essential for T4 phage adsorption in the copresence of Loop 1 and Loop 5. Analyses of phage mutants capable of adsorbing to OmpC mutants demonstrated that amino acids at positions 937 and 942 of the gp37 protein, which is present in the digital tip (DT) region of the T4 long tail fibers, play an important role in adsorption. Furthermore, we created a T4 phage mutant library with artificial modifications in the DT region and isolated and characterized multiple phage mutants capable of adsorbing to OmpC of the O157 strain or lipopolysaccharide of the K12 strain. These results shed light on the mechanism underlying the phage–host specificity mediated by gp37 and OmpC and may be useful in the development of phage therapy via artificial modifications of the DT region of T4 phage. IMPORTANCE Understanding the host specificity of phages will lead to the development of phage therapy. The interaction between outer membrane protein C (OmpC), one of the Escherichia coli receptors, and the gp37 protein composing the digital tip (DT) region of the long tail fibers of bacteriophage T4 largely determines its host specificity. Here, we elucidated the amino acid residues important for the interaction between gp37 and OmpC. This result suggests that the shapes of both proteins at the binding interface play important roles in their interactions, which is likely mediated by multiple residues of both binding partners. Additionally, we successfully isolated multiple phage mutants capable of adsorbing to a variety of E. coli receptors using a mutant T4 phage library with artificial modifications in the DT region, providing a foundation for the alteration of the host specificity.

1999 ◽  
Vol 181 (18) ◽  
pp. 5855-5859 ◽  
Author(s):  
Umender K. Sharma ◽  
Sudha Ravishankar ◽  
Radha Krishan Shandil ◽  
P. V. K. Praveen ◽  
T. S. Balganesh

ABSTRACT The interaction of T4 phage-encoded anti-sigma factor, asiA, andEscherichia coli ς70 was studied by using the yeast two-hybrid system. Truncation of ς70 to identify the minimum region involved in the interaction showed that the fragment containing amino acid residues proximal to the C terminus (residues 547 to 603) was sufficient for complexing to asiA. Studies also indicated that some of the truncated C-terminal fragments (residues 493 to 613) had higher affinity for asiA as judged by the increased β-galactosidase activity. It is proposed that the observed higher affinity may be due to the unmasking of the binding region of asiA on the sigma protein. Advantage was taken of the increased affinity of truncated ς70 fragments to asiA in designing a coexpression system wherein the toxicity of asiA expression in E. coli could be neutralized and the complex of truncated ς70 and asiA could be expressed in large quantities and purified.


2016 ◽  
Vol 5 (6) ◽  
pp. 1003-1015 ◽  
Author(s):  
Ayaka Washizaki ◽  
Tetsuro Yonesaki ◽  
Yuichi Otsuka

2005 ◽  
Vol 49 (7) ◽  
pp. 2874-2878 ◽  
Author(s):  
Anne Bruttin ◽  
Harald Brüssow

ABSTRACT Fifteen healthy adult volunteers received in their drinking water a lower Escherichia coli phage T4 dose (103 PFU/ml), a higher phage dose (105 PFU/ml), and placebo. Fecal coliphage was detected in a dose-dependent way in volunteers orally exposed to phage. All volunteers receiving the higher phage dose showed fecal phage 1 day after exposure; this prevalence was only 50% in subjects receiving the lower phage dose. No fecal phage was detectable a week after a 2-day course of oral phage application. Oral phage application did not cause a decrease in total fecal E. coli counts. In addition, no substantial phage T4 replication on the commensal E. coli population was observed. No adverse events related to phage application were reported. Serum transaminase levels remained in the normal range, and neither T4 phage nor T4-specific antibodies were observed in the serum of the subjects at the end of the study. This is, to our knowledge, the first safety test in the recent English literature which has measured the bioavailability of oral phage in humans and is thus a first step to the rational evaluation of phage therapy for diarrheal diseases.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 549
Author(s):  
Julia Ittensohn ◽  
Jacqueline Hemberger ◽  
Hannah Griffiths ◽  
Maren Keller ◽  
Simone Albrecht ◽  
...  

The uropathogenic Escherichia coli strain CFT073 causes kidney abscesses in mice Toll/interleukin-1 receptor domain-containing protein C (TcpC) dependently and the corresponding gene is present in around 40% of E. coli isolates of pyelonephritis patients. It impairs the Toll-like receptor (TLR) signaling chain and the NACHT leucin-rich repeat PYD protein 3 inflammasome (NLRP3) by binding to TLR4 and myeloid differentiation factor 88 as well as to NLRP3 and caspase-1, respectively. Overexpression of the tcpC gene stopped replication of CFT073. Overexpression of several tcpC-truncation constructs revealed a transmembrane region, while its TIR domain induced filamentous bacteria. Based on these observations, we hypothesized that tcpC expression is presumably tightly controlled. We tested two putative promoters designated P1 and P2 located at 5′ of the gene c2397 and 5′ of the tcpC gene (c2398), respectively, which may form an operon. High pH and increasing glucose concentrations stimulated a P2 reporter construct that was considerably stronger than a P1 reporter construct, while increasing FeSO4 concentrations suppressed their activity. Human urine activated P2, demonstrating that tcpC might be induced in the urinary tract of infected patients. We conclude that P2, consisting of a 240 bp region 5′ of the tcpC gene, represents the major regulator of tcpC expression.


2021 ◽  
Vol 2 (2) ◽  
pp. 19-25
Author(s):  
Hugo V. C. Oliveira ◽  
Spartaco Astolfi-Filho ◽  
Edmar V. Andrade

Antisense oligonucleotides exhibit high potential for use as therapeutic agents. '10-23' DNAzymes are antisense molecules with a high chemical stability and catalytic efficiency. In the present study, we developed a phagemid containing a DNAzyme expression system regulated by two promoters. One of these promoters, pA1, promotes constitutive expression of Moloney murine leukemia virus reverse transcriptase (MoMuLV-RT). The other promoter, plac, regulates transcription of the RNA substrate from which MoMuLV-RT produces the DNAzyme by reverse transcription. The ftsZ DNAzyme was used to validate this expression system in the phagemid, named pDESCP. ftsZ DNAzyme expression altered the morphological pattern of Escherichia coli from a bacillary to filamentous form. In E. coli FtsZ is the primary component of the cell division apparatus, forming a structure known as Z-ring, which is the place of division. It is suggested that the DNAzyme ftsZ is decreasing the translation of this protein. Delivery of pDESCP into F+ strain of E. coli cells, using VCSM13, and the possible insertion of other DNAzymes into the cassette makes this phagemid an important prototype for phage therapy.


2004 ◽  
Vol 72 (12) ◽  
pp. 7030-7039 ◽  
Author(s):  
Eckhard Strauch ◽  
Christoph Schaudinn ◽  
Lothar Beutin

ABSTRACT A bacteriophage encoding the Shiga toxin 2c variant (Stx2c) was isolated from the human Escherichia coli O157 strain CB2851 and shown to form lysogens on the E. coli K-12 laboratory strains C600 and MG1655. Production of Stx2c was found in the wild-type E. coli O157 strain and the K-12 lysogens and was inducible by growing bacteria in the presence of ciprofloxacin. Phage 2851 is the first reported viable bacteriophage which carries an stx 2c gene. Electron micrographs of phage 2851 showed particles with elongated hexagonal heads and long flexible tails resembling phage lambda. Sequence analysis of an 8.4-kb region flanking the stx 2c gene and other genetic elements revealed a mosaic gene structure, as found in other Stx phages. Phage 2851 showed lysis of E. coli K-12 strains lysogenic for Stx phages encoding Stx1 (H19), Stx2 (933W), Stx (7888), and Stx1c (6220) but showed superinfection immunity with phage lambda, presumably originating from the similarity of the cI repressor proteins of both phages. Apparently, phage 2851 integrates at a different chromosomal locus than Stx2 phage 933W and Stx1 phage H19 in E. coli, explaining why Stx2c is often found in combination with Stx1 or Stx2 in E. coli O157 strains. Diagnostic PCR was performed to determine gene sequences specific for phage 2851 in wild-type E. coli O157 strains producing Stx2c. The phage 2851 q and o genes were frequently detected in Stx2c-producing E. coli O157 strains, indicating that phages related to 2851 are associated with Stx2c production in strains of E. coli O157 that were isolated in different locations and time periods.


Blood ◽  
1991 ◽  
Vol 78 (2) ◽  
pp. 357-363 ◽  
Author(s):  
F Taylor ◽  
A Chang ◽  
G Ferrell ◽  
T Mather ◽  
R Catlett ◽  
...  

Abstract Activated protein C is a plasma anticoagulant. For activated protein C to function as an anticoagulant, it must form a complex with protein S. Protein S anticoagulant activity is neutralized by formation of a reversible complex with C4b binding protein (C4bBP). C4bBP is an acute- phase plasma protein. When C4bBP levels increase, mass action forces the level of free protein S to decrease, giving rise to an acquired functional protein S deficiency. It has been proposed that these elevated C4bBP levels and the resultant acquired deficiency of protein S that occurs in inflammation could contribute to a hypercoagulable state. An experimental model to test this hypothesis was suggested by our previous studies that demonstrated that inhibition of protein C activation rendered baboons hypercoagulable in response to sublethal Escherichia coli infusion (J Clin Invest 79:918, 1987). We have extended these studies to examine the effect of inhibition of protein S activity with C4bBP in the host (baboon) response to infusion of sublethal concentrations of E coli organisms. Five sets of animals were studied: (1) those challenged with sublethal concentrations of E coli alone (0.4 x 10(10)/kg); (2) those supplemented only with C4bBP (20 mg/kg); (3) those challenged with the same level of E coli but supplemented with C4bBP (20 mg/kg); (4) those challenged with sublethal E coli and supplemented with C4bBP (20 mg/kg) and sufficient protein S (2.3 mg/kg) to fill the protein S binding sites on C4bBP; and (5) those challenged with lethal concentrations of E coli. Sublethal E coli infusion (group 1 animals) caused only an acute-phase response with no consumption of fibrinogen, detectable organ damage, or detectable tumor necrosis factor (TNF) in the plasma. C4bBP infusion (group 2 animals) resulted in no significant physiologic changes, no detectable plasma TNF, and little change in fibrinogen level. The group 3 animals, receiving both sublethal E coli and C4bBP, exhibited rapid consumption of fibrinogen, systemic organ damage, and detectable circulating TNF ultimately leading to death. The overall response of this group was very similar to the response of the group 5 animals receiving an LD100 dose of E coli. The group 4 animals, which were treated exactly as above except that C4bBP was supplemented with a slight excess of protein S, responded essentially like those that received sublethal E coli alone. These studies suggest that the elevation of C4bBP during an inflammatory response can contribute to fibrinogen consumption and vascular damage. This vascular damage may be associated with enhanced elaboration of cytokines like TNF.(ABSTRACT TRUNCATED AT 400 WORDS)


2011 ◽  
Vol 77 (22) ◽  
pp. 8088-8096 ◽  
Author(s):  
Eelco Franz ◽  
Angela H. A. M. van Hoek ◽  
El Bouw ◽  
Henk J. M. Aarts

ABSTRACTThe variation in manure-amended soil survival capability among 18Escherichia coliO157 strains (8 animal, 1 food, and 9 human isolates) was studied using a single sandy soil sample and a single sample of cattle manure as the inoculum carrier. The virulence profiles ofE. coliO157 strains were characterized by detection of virulence determinants (73 genes, 122 probes in duplicate) by using the IdentibacE. coligenotyping DNA miniaturized microarray. Metabolic profiling was done by subjecting all strains to the Biolog phenotypic carbon microarray. Survival times (calculated as days needed to reach the detection limit using the Weibull model) ranged from 47 to 266 days (median, 120 days). Survival time was significantly higher for the group of human isolates (median, 211 days; minimum [min.], 71; maximum [max.], 266) compared to the group of animal isolates (median, 70 days; min., 47; max., 249) (P= 0.025). Although clustering of human versus animal strains was observed based on pulsed-field gel electrophoresis (PFGE) patterns, no relation between survival time and the presence of virulence genes was observed. Principal component analysis on the metabolic profiling data revealed distinct clustering of short- and long-surviving strains. The oxidization rate of propionic acid, α-ketobutyric acid, and α-hydroxybutyric acid was significantly higher for the long-surviving strains than for the short-surviving strains. The oxidative capacity ofE. coliO157 strains may be regarded as a phenotypic marker for enhanced survival in manure-amended soil. The large variation observed in survival is of importance for risk assessment models.


2006 ◽  
Vol 188 (4) ◽  
pp. 1279-1285 ◽  
Author(s):  
Deborah M. Hinton ◽  
Srilatha Vuthoori ◽  
Rebecca Mulamba

ABSTRACT The N-terminal region (region 1.1) of σ70, the primary σ subunit of Escherichia coli RNA polymerase, is a negatively charged domain that affects the DNA binding properties of σ70 regions 2 and 4. Region 1.1 prevents the interaction of free σ70 with DNA and modulates the formation of stable (open) polymerase/promoter complexes at certain promoters. The bacteriophage T4 AsiA protein is an inhibitor of σ70-dependent transcription from promoters that require an interaction between σ70 region 4 and the −35 DNA element and is the coactivator of transcription at T4 MotA-dependent promoters. Like AsiA, the T4 activator MotA also interacts with σ70 region 4. We have investigated the effect of region 1.1 on AsiA inhibition and MotA/AsiA activation. We show that σ70 region 1.1 is not required for MotA/AsiA activation at the T4 middle promoter P uvsX . However, the rate of AsiA inhibition and of MotA/AsiA activation of polymerase is significantly increased when region 1.1 is missing. We also find that RNA polymerase reconstituted with σ70 that lacks region 1.1 is less stable than polymerase with full-length σ70. Our previous work has demonstrated that the AsiA-inhibited polymerase is formed when AsiA binds to region 4 of free σ70 and then the AsiA/σ70 complex binds to core. Our results suggest that in the absence of region 1.1, there is a shift in the dynamic equilibrium between polymerase holoenzyme and free σ70 plus core, yielding more free σ70 at any given time. Thus, the rate of AsiA inhibition and AsiA/MotA activation increases when RNA polymerase lacks region 1.1 because of the increased availability of free σ70. Previous work has argued both for and against a direct interaction between regions 1.1 and 4. Using an E. coli two-hybrid assay, we do not detect an interaction between these regions. This result supports the idea that the ability of region 1.1 to prevent DNA binding by free σ70 arises through an indirect effect.


Sign in / Sign up

Export Citation Format

Share Document