Striatal cholinergic interneurons and cortico-striatal synaptic plasticity in health and disease

2015 ◽  
Vol 30 (8) ◽  
pp. 1014-1025 ◽  
Author(s):  
Marc Deffains ◽  
Hagai Bergman
2020 ◽  
Vol 21 (4) ◽  
pp. 1539 ◽  
Author(s):  
Ciro De Luca ◽  
Anna Maria Colangelo ◽  
Assunta Virtuoso ◽  
Lilia Alberghina ◽  
Michele Papa

The synaptic cleft has been vastly investigated in the last decades, leading to a novel and fascinating model of the functional and structural modifications linked to synaptic transmission and brain processing. The classic neurocentric model encompassing the neuronal pre- and post-synaptic terminals partly explains the fine-tuned plastic modifications under both pathological and physiological circumstances. Recent experimental evidence has incontrovertibly added oligodendrocytes, astrocytes, and microglia as pivotal elements for synapse formation and remodeling (tripartite synapse) in both the developing and adult brain. Moreover, synaptic plasticity and its pathological counterpart (maladaptive plasticity) have shown a deep connection with other molecular elements of the extracellular matrix (ECM), once considered as a mere extracellular structural scaffold altogether with the cellular glue (i.e., glia). The ECM adds another level of complexity to the modern model of the synapse, particularly, for the long-term plasticity and circuit maintenance. This model, called tetrapartite synapse, can be further implemented by including the neurovascular unit (NVU) and the immune system. Although they were considered so far as tightly separated from the central nervous system (CNS) plasticity, at least in physiological conditions, recent evidence endorsed these elements as structural and paramount actors in synaptic plasticity. This scenario is, as far as speculations and evidence have shown, a consistent model for both adaptive and maladaptive plasticity. However, a comprehensive understanding of brain processes and circuitry complexity is still lacking. Here we propose that a better interpretation of the CNS complexity can be granted by a systems biology approach through the construction of predictive molecular models that enable to enlighten the regulatory logic of the complex molecular networks underlying brain function in health and disease, thus opening the way to more effective treatments.


2017 ◽  
Vol 235 (6) ◽  
pp. 1645-1655 ◽  
Author(s):  
A. Singh ◽  
Wickliffe C. Abraham

2019 ◽  
Author(s):  
Yan-Feng Zhang ◽  
Simon D. Fisher ◽  
Manfred Oswald ◽  
Jeffery R. Wickens ◽  
John N. J. Reynolds

AbstractPauses in the firing of tonically-active cholinergic interneurons (ChIs) in the striatum coincide with phasic activation of dopamine neurons during reinforcement learning. However, how this pause influences cellular substrates of learning is unclear. Using two in vivo paradigms, we report that long-term potentiation (LTP) at corticostriatal synapses with spiny projection neurons (SPNs) is dependent on the temporal coincidence of ChI pause and dopamine phasic activation, critically accompanied by SPN depolarization.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Mohammed Mostafizur Rahman ◽  
Sonal Kedia ◽  
Giselle Fernandes ◽  
Sumantra Chattarji

Although mGluR5-antagonists prevent fear and anxiety, little is known about how the same receptor in the amygdala gives rise to both. Combining in vitro and in vivo activation of mGluR5 in rats, we identify specific changes in intrinsic excitability and synaptic plasticity in basolateral amygdala neurons that give rise to temporally distinct and mutually exclusive effects on fear-related behaviors. The immediate impact of mGluR5 activation is to produce anxiety manifested as indiscriminate fear of both tone and context. Surprisingly, this state does not interfere with the proper encoding of tone-shock associations that eventually lead to enhanced cue-specific fear. These results provide a new framework for dissecting the functional impact of amygdalar mGluR-plasticity on fear versus anxiety in health and disease.


2001 ◽  
Vol 21 (17) ◽  
pp. 6492-6501 ◽  
Author(s):  
Takeo Suzuki ◽  
Masami Miura ◽  
Kin-ya Nishimura ◽  
Toshihiko Aosaki

2021 ◽  
Vol 22 (5) ◽  
pp. 2342
Author(s):  
Gaia Piccioni ◽  
Dalila Mango ◽  
Amira Saidi ◽  
Massimo Corbo ◽  
Robert Nisticò

In this review, we focus on the emerging roles of microglia in the brain, with particular attention to synaptic plasticity in health and disease. We present evidence that ramified microglia, classically believed to be “resting” (i.e., inactive), are instead strongly implicated in dynamic and plastic processes. Indeed, there is an intimate relationship between microglia and neurons at synapses which modulates activity-dependent functional and structural plasticity through the release of cytokines and growth factors. These roles are indispensable to brain development and cognitive function. Therefore, approaches aimed at maintaining the ramified state of microglia might be critical to ensure normal synaptic plasticity and cognition. On the other hand, inflammatory signals associated with Alzheimer’s disease are able to modify the ramified morphology of microglia, thus leading to synapse loss and dysfunction, as well as cognitive impairment. In this context, we highlight microglial TREM2 and CSF1R as emerging targets for disease-modifying therapy in Alzheimer’s disease (AD) and other neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document