scholarly journals Quality of Life after Deep Brain Stimulation of Pediatric Patients With Dyskinetic Cerebral Palsy: A Prospective, Single‐Arm, Multicenter Study With a Subsequent Randomized Double‐Blind Crossover ( STIM‐CP )

2021 ◽  
Author(s):  
Anne Koy ◽  
Andrea A. Kühn ◽  
Julius Huebl ◽  
Gerd‐Helge Schneider ◽  
Anne K. Riesen ◽  
...  
2013 ◽  
Vol 119 (6) ◽  
pp. 1537-1545 ◽  
Author(s):  
Lisbeth Schjerling ◽  
Lena E. Hjermind ◽  
Bo Jespersen ◽  
Flemming F. Madsen ◽  
Jannick Brennum ◽  
...  

Object The authors' aim was to compare the subthalamic nucleus (STN) with the globus pallidus internus (GPi) as a stimulation target for deep brain stimulation (DBS) for medically refractory dystonia. Methods In a prospective double-blind crossover study, electrodes were bilaterally implanted in the STN and GPi of 12 patients with focal, multifocal, or generalized dystonia. Each patient was randomly selected to undergo initial bilateral stimulation of either the STN or the GPi for 6 months, followed by bilateral stimulation of the other nucleus for another 6 months. Preoperative and postoperative ratings were assessed by using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and video recordings. Quality of life was evaluated by using questionnaires (36-item Short Form Health Survey). Supplemental Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scores were assessed for patients with focal dystonia (torticollis) by examining the video recordings. Results On average for all patients, DBS improved the BFMDRS movement scores (p < 0.05) and quality of life physical scores (p < 0.01). After stimulation of the STN, the mean 6-month improvement in BFMDRS movement score was 13.8 points; after stimulation of the GPi, this improvement was 9.1 points (p = 0.08). Quality of life did not differ significantly regardless of which nucleus was stimulated. All 12 patients accepted 6 months of stimulation of the STN, but only 7 accepted 6 months of stimulation of the GPi. Among those who rejected stimulation of the GPi, 3 accepted concomitant stimulation of both the STN and GPi for 6 months, resulting in improved quality of life physical and mental scores and BFMDRS movement scores. Among the 4 patients who were rated according to TWSTRS, after 6 months of stimulation of both the STN and GPi, TWSTRS scores improved by 4.7% after stimulation of the GPi and 50.8% after stimulation of the STN (p = 0.08). Conclusions The STN seems to be a well-accepted, safe, and promising stimulation target in the treatment of dystonia, but further studies are necessary before the optimal target can be concluded. Simultaneous stimulation of the STN and GPi should be further investigated. Clinical trial registration no.: KF 01-110/01 (Committees on Biomedical Research Ethics of the Capital Region of Denmark).


2009 ◽  
Author(s):  
Hunter Covert ◽  
Pennie S. Seibert ◽  
Caitlin C. Otto ◽  
Missy Coblentz ◽  
Nicole Whitener ◽  
...  

Neurology ◽  
2017 ◽  
Vol 89 (19) ◽  
pp. 1944-1950 ◽  
Author(s):  
Matthew A. Brodsky ◽  
Shannon Anderson ◽  
Charles Murchison ◽  
Mara Seier ◽  
Jennifer Wilhelm ◽  
...  

Objective:To compare motor and nonmotor outcomes at 6 months of asleep deep brain stimulation (DBS) for Parkinson disease (PD) using intraoperative imaging guidance to confirm electrode placement vs awake DBS using microelectrode recording to confirm electrode placement.Methods:DBS candidates with PD referred to Oregon Health & Science University underwent asleep DBS with imaging guidance. Six-month outcomes were compared to those of patients who previously underwent awake DBS by the same surgeon and center. Assessments included an “off”-levodopa Unified Parkinson’s Disease Rating Scale (UPDRS) II and III, the 39-item Parkinson's Disease Questionnaire, motor diaries, and speech fluency.Results:Thirty participants underwent asleep DBS and 39 underwent awake DBS. No difference was observed in improvement of UPDRS III (+14.8 ± 8.9 vs +17.6 ± 12.3 points, p = 0.19) or UPDRS II (+9.3 ± 2.7 vs +7.4 ± 5.8 points, p = 0.16). Improvement in “on” time without dyskinesia was superior in asleep DBS (+6.4 ± 3.0 h/d vs +1.7 ± 1.2 h/d, p = 0.002). Quality of life scores improved in both groups (+18.8 ± 9.4 in awake, +8.9 ± 11.5 in asleep). Improvement in summary index (p = 0.004) and subscores for cognition (p = 0.011) and communication (p < 0.001) were superior in asleep DBS. Speech outcomes were superior in asleep DBS, both in category (+2.77 ± 4.3 points vs −6.31 ± 9.7 points (p = 0.0012) and phonemic fluency (+1.0 ± 8.2 points vs −5.5 ± 9.6 points, p = 0.038).Conclusions:Asleep DBS for PD improved motor outcomes over 6 months on par with or better than awake DBS, was superior with regard to speech fluency and quality of life, and should be an option considered for all patients who are candidates for this treatment.Clinicaltrials.gov identifier:NCT01703598.Classification of evidence:This study provides Class III evidence that for patients with PD undergoing DBS, asleep intraoperative CT imaging–guided implantation is not significantly different from awake microelectrode recording–guided implantation in improving motor outcomes at 6 months.


2018 ◽  
Vol 33 (7) ◽  
pp. 1160-1167 ◽  
Author(s):  
Elliot Hogg ◽  
Emmanuel During ◽  
Echo E. Tan ◽  
Kishore Athreya ◽  
Jonathan Eskenazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document