Integral representation and estimation of harmonic functions in the quaternionic half space

2017 ◽  
Vol 40 (15) ◽  
pp. 5484-5489
Author(s):  
Yan Hui Zhang ◽  
Kit Ian Kou
Analysis ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 59-64
Author(s):  
Yoichi Miyazaki

Abstract We give another proof of Poisson’s integral formula for harmonic functions in a ball or a half space by using heat kernels with Green’s formula. We wish to emphasize that this method works well even for a half space, which is an unbounded domain; the functions involved are integrable, since the heat kernel decays rapidly. This method needs no trick such as the subordination identity, which is indispensable when applying the Fourier transform method for a half space.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yevgenya Movshovich

We obtain new sharp upper bounds of the inferior mean for positive harmonic functions defined by finite boundary measures that lie on curves or subspaces of the boundary of the half-space.


2020 ◽  
Vol 30 (5) ◽  
Author(s):  
Sirkka-Liisa Eriksson ◽  
Terhi Kaarakka

Abstract We study harmonic functions with respect to the Riemannian metric $$\begin{aligned} ds^{2}=\frac{dx_{1}^{2}+\cdots +dx_{n}^{2}}{x_{n}^{\frac{2\alpha }{n-2}}} \end{aligned}$$ d s 2 = d x 1 2 + ⋯ + d x n 2 x n 2 α n - 2 in the upper half space $$\mathbb {R}_{+}^{n}=\{\left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:x_{n}>0\}$$ R + n = { x 1 , … , x n ∈ R n : x n > 0 } . They are called $$\alpha $$ α -hyperbolic harmonic. An important result is that a function f is $$\alpha $$ α -hyperbolic harmonic íf and only if the function $$g\left( x\right) =x_{n}^{-\frac{ 2-n+\alpha }{2}}f\left( x\right) $$ g x = x n - 2 - n + α 2 f x is the eigenfunction of the hyperbolic Laplace operator $$\bigtriangleup _{h}=x_{n}^{2}\triangle -\left( n-2\right) x_{n}\frac{\partial }{\partial x_{n}}$$ △ h = x n 2 ▵ - n - 2 x n ∂ ∂ x n corresponding to the eigenvalue $$\ \frac{1}{4}\left( \left( \alpha +1\right) ^{2}-\left( n-1\right) ^{2}\right) =0$$ 1 4 α + 1 2 - n - 1 2 = 0 . This means that in case $$\alpha =n-2$$ α = n - 2 , the $$n-2$$ n - 2 -hyperbolic harmonic functions are harmonic with respect to the hyperbolic metric of the Poincaré upper half-space. We are presenting some connections of $$\alpha $$ α -hyperbolic functions to the generalized hyperbolic Brownian motion. These results are similar as in case of harmonic functions with respect to usual Laplace and Brownian motion.


1958 ◽  
Vol 11 (1) ◽  
pp. 11-24 ◽  
Author(s):  
G. Temple

It is a singular honour to be invited to deliver a lecture commemorating the work of Sir Edmund Whittaker, especially before the Edinburgh Mathematical Society, whose development owes so much to his initiative and co-operation. But when I reflect on the difficulties of the task I can only exclaim in the words of St Jerome's preface to his translation of the New Testament, “Pius labor, sed periculosa praesumptio”.


Sign in / Sign up

Export Citation Format

Share Document