Solving fractional differential equation using block‐pulse functions and Bernstein polynomials

Author(s):  
Jie Zhang ◽  
Yinggan Tang ◽  
Fucai Liu ◽  
Zhaopeng Jin ◽  
Yao Lu
2018 ◽  
Vol 36 (2) ◽  
pp. 231 ◽  
Author(s):  
Amir Hosein Refahi Sheikhani ◽  
Mahamad Mashoof

In this paper, we introduce methods based on operational matrix of fractional order integration for solving a typical n-term non-homogeneous fractional differential equation (FDE). We use Block pulse wavelets matrix of fractional order integration where a fractional derivative is defined in the Caputo sense. Also we consider Hybrid of Block-pulse functions and shifted Legendre polynomials to approximate functions. By uses these methods we translate an FDE to an algebraic linear equations which can be solve. Methods has been tested by some numerical examples.


2021 ◽  
Vol 5 (3) ◽  
pp. 83
Author(s):  
Bilgi Görkem Yazgaç ◽  
Mürvet Kırcı

In this paper, we propose a fractional differential equation (FDE)-based approach for the estimation of instantaneous frequencies for windowed signals as a part of signal reconstruction. This approach is based on modeling bandpass filter results around the peaks of a windowed signal as fractional differential equations and linking differ-integrator parameters, thereby determining the long-range dependence on estimated instantaneous frequencies. We investigated the performance of the proposed approach with two evaluation measures and compared it to a benchmark noniterative signal reconstruction method (SPSI). The comparison was provided with different overlap parameters to investigate the performance of the proposed model concerning resolution. An additional comparison was provided by applying the proposed method and benchmark method outputs to iterative signal reconstruction algorithms. The proposed FDE method received better evaluation results in high resolution for the noniterative case and comparable results with SPSI with an increasing iteration number of iterative methods, regardless of the overlap parameter.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document